簡易檢索 / 詳目顯示

研究生: 張崇豪
Jhang, Chong-Hao
論文名稱: 應用田口方法於撲翼機之設計
Application of Taguchi Method in Design of Flapping Micro Aerial Vehicle
指導教授: 胡潛濱
HWU, CHYAN-BIN
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 65
中文關鍵詞: 撲翼機微飛行器田口方法
外文關鍵詞: MAV, flapping-wing, Taguchi Method
相關次數: 點閱:159下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於利用田口實驗方法建立一套對撲翼機參數設計的流程。在製作上,以市售玩具撲翼機做為參考,再由市面上購買具有同等功能之電子設備,與自行製作之傳動機構、機身骨架、尾翼做結合,完成撲翼機;而撲翼機其機構、翅膀結構、拍翅頻率、機體攻角、翅膀外型、翅膀面積…等各個尺寸的設計,皆影響其升力值及推力值,因此採用田口式參數設計方法,經由田口式直交表找出最佳的參數設計組合,期使撲翼機之性能可以有所提升。
    本研究最後依照最佳的參數設計組合製作出撲翼機,接著進行飛行性能測試,包含了升力值、滯空時間、操縱性以及飛行的穩定性測試,經驗證後,與田口方法預測之結果吻合。

    The purpose of this research is establishing a set of procedure to find out the optimal parameter of flapping-wing vehicle by utilizing Taguchi Method. In fabricating the flapping wing, we refer to the commercial flapping-wing aerial vehicle toy; in addition to the electronic components purchased from the model shops, we also utilize some necessary components such as transmission system, airframe and fin which should be built by ourselves to meet some specific design requirements. Then, we expect to use the optimal parameter combination obtained by Taguchi Method for enhancing the performance of the flapping wing. That is, the Taguchi Method can be used to help us to understand the effects of the design factors including the mechanism, angle of attack, frequency, wing area, wing shape of the flapping wing.
    Finally, we fabricate one flapping-wing based on the best parameter combinations. Then, some performance test has been done, including the value of lift, flight time, maneuverability and stability during the flight. The result predicted with Taguchi Method is identical to what we test.

    中文摘要 英文摘要 致謝 目錄........................... i 表目錄.......................... v 圖目錄.......................... vii 符號說明......................... ix 第一章 緒論...................... 1 1.1 前言...................... 1 1.2 文獻回顧.................... 2 1.3 研究動機與方向................. 3 1.4 論文架構.................... 4 第二章 實驗設計法................... 5 2.1 實驗設計法簡介................. 5 2.2 田口式實驗設計法................ 6 2.2.1實驗設計因子.................. 8 2.2.2直交表..................... 9 2.2.3信號雜訊比................... 11 2.2.4變異數分析................... 13 第三章 實驗規劃設計.................. 15 3.1 實驗設備.................... 15 3.2 實驗設計流程..................... 18 3.2.1品質特性設定.................. 18 3.2.2控制因子討論.................. 20 3.2.3實驗參數設計.................. 22 3.2.4確認實驗.................... 25 3.3 升力、推力、拍頻量測流程............. 26 3.3.1升力量測.................... 26 3.3.2推力量測.................... 28 3.3.3拍翅頻率量測.................. 29 第四章 撲翼機之製作.................. 30 4.1 撲翼機製作................... 30 4.1.1減速齒輪組及拍翅機構.............. 30 4.1.2翅膀支架、拉桿及翅膀............ 32 4.1.3機身及尾翼................... 33 4.1.4電子裝備.................... 34 4.2 遙控器及重心調整說明.............. 36 4.2.1遙控器..................... 36 4.2.2重心調整說明.................. 37 第五章 結果與討論................... 38 5.1 實驗Ⅰ之田口法升力、推力分析........... 38 5.1.1升力分析.................... 38 5.1.2推力分析.................... 43 5.1.3結果與分析................... 47 5.1.4確認實驗.................... 49 5.1.5實際飛行測試.................. 53 5.2 實驗討論.................... 53 第六章 結論與未來展望................. 55 6.1 結論...................... 55 6.2 未來展望.................... 56 參考文獻.......................... 57 附錄............................ 60 自述............................ 65

    [1]T.N. Pornsin-sirirak, Y.C. Tai, H. Nassef, C.M. Ho, “Titanium-alloy MEMS wing technology for a micro aerial vehicle application”, Sensors and Actuators, A89, pp.95-103, 2001.
    [2] T. Nick Pornsin-sirirak, et al., “Flexible parylene-valved skin for adaptive flow control,” Proceeding of the 15th IEEE MEMS conference, Las Vegas, USA, pp.101-104, 2004.
    [3]A. Ashok, C.J.G. Heynze, S.R. Jongerius, A.N.A. Kacgor, R.C.A. Lagarde, P. Moelans, W.V.J. Roos, M.H. Straathof, K.M.E. de Clerq, D.A.J. van Ginneken, G.J. van der Veen, “DELFLY”, Delft Aerospace Design Projects, 2005.
    [4]T.E. Zegers, J.A. Mulder, B. Remes, W. Berkouwer, B. Peeters, D. Lentink, C. Passchier, “ExoFly: a flapping wing aerobot for planetary survey and exploration”, European Planetary Science Congress Abstracts, Vol.3, 2008.
    [5] R.Żbikowski, C. Galiński, C. B. Pedersen, “Four-Bar Linkage Mechanism for Insectlike Flapping Wings in Hover: Concept and an Outline of Its Realization,”Journal of Mechanical Design, Transactions of the ASME, Vol. 127, pp. 817-824, 2005.
    [6]H.C. Chunga, K. Kummaria, S.J. Croucherb, N.J. Lawsonb, S. Guob, R.W. Whatmorec, Z. Huanga, “Development of piezoelectric fans for flapping wing application”,Sensors and Actuators A:Physical, Vol.149, pp.136-142, 2009.
    [7]何仁揚,“拍撲式微飛行器之製作及其現地升力之量測研究”,碩士論文,淡江大學機械與機電工程學系研究所,2005。
    [8]馮國華,“拍撲式微飛行器之製作改良及其飛行訊息傳輸之合”,碩士論文,淡江大學機械與機電工程學系研究所,2007。
    [9]施宏明,“結合PVDF現地量測之拍撲式微飛行器製作”,碩士論文,淡江大學機械與機電工程學系研究所,2007。
    [10]D.K. Kim, J.H. Han, “Smart flapping wing using Macro-Fiber Composite actuators”, Smart Materials and Structures, Proc.of SPIE Vol.6173 61730F-1, 2006.
    [11]林哲旭,“拍翅翼飛行載具之探討”,碩士論文,成功大學航空太空工程研究所,2005。
    [12]歐亦泰,“振翅翼翅膀結構對升力之影響”,碩士論文,成功大學航空太空工程研究所,2007。
    [13]王俊人,“以臨界應變估測拍翅翼之強度”,碩士論文,成功大學航空太空工程研究所,2007。
    [14]程士洲,“撲翼機之製作與升力量測”,碩士論文,成功大學航空太空
    工程研究所,2009。
    [15]李輝煌,“田口方法:品質設計的原理與實務”,高立圖書有限公司出 版,2008年。
    [16]D. Silin, B. Malladi, S. Shkarayev, “The University of Arizona Micro Ornithopter” ,The 2nd US-European Competition and Workshop on Micro Air Vehicles, Sandestin, FL, October 30- November 2, 2006.
    [17] http://www.tes.com.tw/index.htm,TES泰仕電子工業股份有限公司,2009。
    [18] http://www.mijon.net/jm/,微動機棚,2008。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE