| 研究生: |
李婉瑜 Lee, Wan-Yu |
|---|---|
| 論文名稱: |
探討SUV39H1在抗腫瘤藥物誘發之老化肝癌細胞中調控p16蛋白質的作用 Study on SUV39H1 regulated-p16 expression in anticancer drug-induced senescence on hepatoma cells |
| 指導教授: |
張志鵬
Chang, Chih-Peng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 肝癌 、細胞老化 、AR-12 、sorafenib (蕾莎瓦) 、p16INK4a 、SUV39H1 、細胞自噬 、蛋白酶體 |
| 外文關鍵詞: | hepatocellular carcinoma, cell senescence, AR-12, sorafenib, p16INK4a, SUV39H1, autophagy, proteasome |
| 相關次數: | 點閱:54 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝癌(Hepatocellular carcinoma)是肝臟的原發性惡性腫瘤。肝癌的治療取決於疾病的階段,例如化療被認為用於治療晚期肝癌。這些細胞毒性藥物誘導癌細胞死亡以控制腫瘤生長。除了誘發細胞死亡之外,最近的研究顯示化療藥物也可能引發細胞老化以抑制腫瘤生長。在本研究中,我們測試了三種具潛力的臨床抗癌藥物AR-12,蕾莎瓦 (sorafenib)和順鉑 (Cisplatin)的細胞老化誘導活性。研究結果顯示,這些藥物都引發了肝癌細胞的老化反應,包括抑制細胞生長能力和增加β-半乳糖苷酶活性。再者,給予這三種藥物會導致 p16INK4a表現量增加,但卻造成p21表現量下降。這暗示AR-12、蕾莎瓦和順鉑可能會經由p16INK4a訊息傳遞路徑誘發細胞老化。此外,給予AR-12和蕾莎瓦會促使p16INK4a的負向調控因子SUV39H1在細胞內被降解,但給予順鉑則不影響SUV39H1的表現量。雖然過度表現SUV39H1可以降低AR-12和蕾莎瓦所調控的p16INK4a表現和細胞老化相關半乳糖苷酶活性,但是進一步發現,AR-12和蕾莎瓦會分別誘導細胞自噬及蛋白酶體反應來降解SUV39H1。我們觀察到在AR-12處理下,細胞質中的SUV39H1會與自噬小體有共位的現象,並且通過細胞自噬被降解。此外,在蕾莎瓦處理的細胞中也清楚地發現了在細胞質會有核蛋白SUV39H1的表現。綜合以上所述,我們闡明了在AR-12和蕾莎瓦會分別藉由細胞自噬和蛋白酶體作用來降解SUV39H1,進而活化p16INK4a而誘導肝癌細胞老化。因此,本研究提供了AR-12和蕾莎瓦抗癌作用的新機制,並且提出不同的SUV39H1蛋白水解途徑皆參與AR-12和蕾莎瓦所誘導的細胞老化。
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver. The treatment of HCC varies depending on the stage of disease, such as chemotherapy considered for treating advanced HCC. These cytotoxic drugs are suggested to induce cancer cell death to control tumor growth. In addition to cell death, recent studies have indicated that chemo drugs may also trigger cell senescence responses to restrain the tumor growth. In this study, we tested senescence inducing activities of three potential clinical anti-cancer drugs, AR-12, sorafenib and cisplatin. The results showed that these drugs all triggered the senescence responses, including cell growth inhibition and increase of beta-galactosidase activity, in HCC cells. We found that these three drugs resulted in upregulation of p16INK4a, whereas the expression of p21 was downregulated. This suggests that p16INK4a signalling pathway is involved in AR-12, sorafenib and cisplatin-induced cellular senescence in hepatoma cells. Furthermore, SUV39H1, a negative regulator of p16INK4a, was down-regulated in AR-12 and sorafenib-treated HCC cells, but not in cisplatin-treated cells. Although overexpression of SUV39H1 attenuated both AR-12 and sorafenib-induced p16INK4a upregulation and beta-galactosidase activity, the degradation of SUV39H1 caused by AR-12 and sorafenib was differently mediated by autophagy and proteasome, respectively. We observed that SUV39H1 was targeted by autophagosomes in cytoplasm and degraded via autophagy under AR-12 treatment. Furthermore, the cytosolic expression of nucleus remaining protein, SUV39H1, was also clearly found in sorafenib-treated cells. Overall, we elucidated that upon AR-12 and sorafenib treatment, SUV39H1 degradation is separately mediated by autophagy and proteasome, which in turn regulates p16INK4a expression to facilitate senescence induction. Our study provides a novel mechanism to elicit senescence for the anti-cancer effect of AR-12 and sorafenib via different proteolytic regulation of SUV39H1.
1 Mittal, S. & El-Serag, H. B. Epidemiology of HCC: consider the population. J. Clin. Gastroenterol. 47, S2-6 (2013).
2 El-Serag, H. B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264-1273 (2012).
3 Janevska, D., Chaloska-Ivanova, V. & Janevski, V. Hepatocellular carcinoma: risk factors, diagnosis and treatment. Open Access Maced J Med Sci 3, 732-736 (2015).
4 Xie, Y. in Infectious Agents Associated Cancers: Epidemiology and Molecular Biology 11-21 (2017).
5 Block, T. M., Mehta, A. S., Fimmel, C. J. & Jordan, R. Molecular viral oncology of hepatocellular carcinoma. Oncogene 22, 5093-5107 (2003).
6 Tokino, T., Tamura, H., Hori, N. & Matsubara, K. Chromosome deletions associated with hepatitis B virus integration. Virology 185, 879-882 (1991).
7 Ali, A. et al. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World journal of gastroenterology 20, 10238-10248 (2014).
8 Murakami, Y. et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 54, 1162-1168 (2005).
9 Truant, R., Antunovic, J., Greenblatt, J., Prives, C. & Cromlish, J. A. Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. J. Virol. 69, 1851-1859 (1995).
10 Lee, A. T. et al. The hepatitis B virus X protein sensitizes HepG2 cells to UV light-induced DNA damage. J. Biol. Chem. 280, 33525-33535 (2005).
11 Shan, C. et al. Hepatitis B virus X protein promotes liver cell proliferation via a positive cascade loop involving arachidonic acid metabolism and p-ERK1/2. Cell Res. 20, 563-575 (2010).
12 Shih, W.-L., Kuo, M.-L., Chuang, S.-E., Cheng, A.-L. & Doong, S.-L. Hepatitis B virus X protein activates a survival signaling by linking SRC to phosphatidylinositol 3-kinase. J. Biol. Chem. 278, 31807-31813 (2003).
13 Shen, L. et al. Hepatitis B virus X (HBx) play an anti-apoptosis role in hepatic progenitor cells by activating Wnt/β-catenin pathway. Mol. Cell. Biochem. 383, 213-222 (2013).
14 Kao, C.-F., Chen, S.-Y., Chen, J.-Y. & Lee, Y.-H. W. Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. Oncogene 23, 2472-2483 (2004).
15 Machida, K. et al. Hepatitis C virus causes uncoupling of mitotic checkpoint and chromosomal polyploidy through the Rb pathway. J. Virol. 83, 12590-12600 (2009).
16 Tan, S. L. et al. NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc. Natl. Acad. Sci. U. S. A. 96, 5533-5538 (1999).
17 Munakata, T., Nakamura, M., Liang, Y., Li, K. & Lemon, S. M. Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proc. Natl. Acad. Sci. U. S. A. 102, 18159-18164 (2005).
18 Street, A., Macdonald, A., McCormick, C. & Harris, M. Hepatitis C virus NS5A-mediated activation of phosphoinositide 3-kinase results in stabilization of cellular beta-catenin and stimulation of beta-catenin-responsive transcription. J. Virol. 79, 5006-5016 (2005).
19 Nie, D. et al. Hepatitis C virus core protein interacts with Snail and histone deacetylases to promote the metastasis of hepatocellular carcinoma. Oncogene 35, 3626-3635 (2016).
20 Waris, G. & Ahsan, H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog. 5, 14 (2006).
21 Yoo, K. Y. & Shin, H. R. Cancer epidemiology and prevention. Korean Journal of Epidemiology 25, 1-15 (2003).
22 Donato, F. et al. Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. Am. J. Epidemiol. 155, 323-331 (2002).
23 Lin, C.-W. et al. Heavy alcohol consumption increases the incidence of hepatocellular carcinoma in hepatitis B virus-related cirrhosis. J. Hepatol. 58, 730-735 (2013).
24 Punzalan, C. S., Bukong, T. N. & Szabo, G. Alcoholic hepatitis and HCV interactions in the modulation of liver disease. J. Viral Hepat. 22, 769-776 (2015).
25 Kew, M. C. Aflatoxins as a cause of hepatocellular carcinoma. J. Gastrointestin. Liver Dis. 22, 305-310 (2013).
26 Wu, H. C. & Santella, R. The role of aflatoxins in hepatocellular carcinoma. Hepatitis monthly 12 (2012).
27 Lunn, R. M. et al. p53 mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan. Cancer Res. 57, 3471-3477 (1997).
28 Abdelmalek, M. F. & Diehl, A. M. Nonalcoholic fatty liver disease as a complication of insulin resistance. Medical Clinics 91, 1125-1149 (2007).
29 Baffy, G., Brunt, E. M. & Caldwell, S. H. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J. Hepatol. 56, 1384-1391 (2012).
30 Matteoni, C. A. et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116, 1413-1419 (1999).
31 Bruix, J. Treatment of hepatocellular carcinoma. Hepatology 25, 259-262 (1997).
32 Raza, A. & Sood, G. K. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World journal of gastroenterology 20, 4115 (2014).
33 Bruix, J., Reig, M. & Sherman, M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 150, 835-853 (2016).
34 Nagasue, N. et al. Incidence and factors associated with intrahepatic recurrence following resection of hepatocellular carcinoma. Gastroenterology 105, 488-494 (1993).
35 Keating, G. M. & Santoro, A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 69, 223-240 (2009).
36 Zhai, B. & Sun, X.-Y. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. Send to World J Hepatol. 5, 345-352 (2013).
37 Kang, T.-H. et al. Atractylenolide III, a sesquiterpenoid, induces apoptosis in human lung carcinoma A549 cells via mitochondria-mediated death pathway. Food Chem. Toxicol. 49, 514-519 (2011).
38 Dimri, G. P. What has senescence got to do with cancer? Cancer Cell 7, 505-512 (2005).
39 Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614-636 (1965).
40 Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature reviews. Cancer 6, 472-476 (2006).
41 Rodier, F. & Campisi, J. Four faces of cellular senescence. Send to J Cell Biol. 192,547-556 (2011).
42 Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15, 482-496 (2014).
43 Olsen, C. L., Gardie, B., Yaswen, P. & Stampfer, M. R. Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene 21, 6328-6239 (2002).
44 Michaloglou, C. et al. BRAF E600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720-724 (2005).
45 Abbas, T. & Dutta, A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9, 400-414 (2009).
46 Bruce, J. L., Hurford Jr, R. K., Classon, M., Koh, J. & Dyson, N. Requirements for cell cycle arrest by p16INK4a. Mol. Cell 6, 737-742 (2000).
47 Takahashi, A. et al. Mitogenic signalling and the p16 INK4a–Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 8, 1291-1297 (2006).
48 Martin, L. & Schilder, R. J. Novel non-cytotoxic therapy in ovarian cancer: current status and future prospects. J. Natl. Compr. Canc. Netw. 4, 955-966 (2006).
49 Chang, B.-D. et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59, 3761-3767 (1999).
50 Tsuji, T., Aoshiba, K. & Nagai, A. Alveolar cell senescence in patients with pulmonary emphysema. Am. J. Respir. Crit. Care Med. 174, 886-893 (2006).
51 Han, Z. et al. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J. Biol. Chem. 277, 17154-17160 (2002).
52 Ewald, J. A., Desotelle, J. A., Wilding, G. & Jarrard, D. F. Therapy-induced senescence in cancer. J Natl Cancer Inst 102, 1536-1546 (2010).
53 Hernández-Muñoz, I., Taghavi, P., Kuijl, C., Neefjes, J. & van Lohuizen, M. Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol. Cell. Biol. 25, 11047-11058 (2005).
54 Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 14, 183-193 (2004).
55 Krouwels, I. M. et al. A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J Cell Biol. 170, 537-549 (2005).
56 Ait‐Si‐Ali, S. et al. A Suv39h‐dependent mechanism for silencing S‐phase genes in differentiating but not in cycling cells. EMBO J 23, 605-615 (2004).
57 Murayama, A. et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133, 627-639 (2008).
58 Rayess, H., Wang, M. B. & Srivatsan, E. S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 130, 1715-1725 (2012).
59 Sidler, C. et al. A role for SUV39H1-mediated H3K9 trimethylation in the control of genome stability and senescence in WI38 human diploid lung fibroblasts. Aging (Albany NY) 6, 545-563 (2014).
60 Chiba, T. et al. Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int. J. Cancer 136, 289-298 (2015).
61 Wong, E. & Cuervo, A. M. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb. Perspect. Biol. 2, a006734 (2010).
62 Sarkar, S., Ravikumar, B. & Rubinsztein, D. C. Autophagic clearance of aggregate‐prone proteins associated with neurodegeneration. Methods Enzymol. 453, 83-110 (2009).
63 Bedford, L. et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci. 28, 8189-8198 (2008).
64 Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861-2873 (2007).
65 Glick, D., Barth, S. & Macleod, K. F. Autophagy: cellular and molecular mechanisms. J Pathol 221, 3-12 (2010).
66 Kroemer, G., Mariño, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280-293 (2010).
67 Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672 (1999).
68 Karantza-Wadsworth, V. et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621-1635 (2007).
69 Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51-64 (2006).
70 Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906 (2004).
71 Kanzawa, T. et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448-457 (2004).
72 Yang, P.-M. & Chen, C.-C. Life or death? Autophagy in anticancer therapies with statins and histone deacetylase inhibitors. Autophagy 7, 107-108 (2011).
73 Choi, K. S. Autophagy and cancer. Exp. Mol. Med. 44, 109 (2012).
74 Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798-803 (2009).
75 Capparelli, C. et al. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell cycle 11, 2285-2302 (2012).
76 Nam, H. Y., Han, M. W., Chang, H. W., Kim, S. Y. & Kim, S. W. Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy 9, 1631-1632 (2013).
77 Liu, H., He, Z. & Simon, H.-U. Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy 10, 372-373 (2014).
78 Horikawa, I. et al. Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence. Nat Commun 5, 4706 (2014).
79 Dou, Z. X. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105-109 (2015).
80 Goehe, R. W. et al. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J. Pharmacol. Exp. Ther. 343, 763-778 (2012).
81 Burger, A. M. & Seth, A. K. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur. J. Cancer 40, 2217-2229 (2004).
82 Lecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807-1819 (2006).
83 Mocciaro, A. & Rape, M. Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. J. Cell Sci. 125, 255-263 (2012).
84 Deschênes-Simard, X. et al. Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes Dev. 27, 900-915 (2013).
85 Ishikawa, Y. et al. Opposing functions of Fbxw7 in keratinocyte growth, differentiation and skin tumorigenesis mediated through negative regulation of c-Myc and Notch. Oncogene 32, 1921-1932 (2013).
86 Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8, 83-93 (2008).
87 Kotake, Y., Zeng, Y. & Xiong, Y. DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res. 69, 1809-1814 (2009).
88 Roy, N. et al. DDB2, an essential mediator of premature senescence. Mol. Cell. Biol. 30, 2681-2692 (2010).
89 Wade, M., Li, Y.-C. & Wahl, G. M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nature Reviews Cancer 13, 83-96 (2013).
90 Lin, H.-K. et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374-379 (2010).
91 de Oliveira, R. L. & Bernards, R. Anti‐cancer therapy: senescence is the new black. EMBO J, e99386 (2018).
92 Rayess, H., Wang, M. B. & Srivatsan, E. S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 130, 1715-1725, doi:10.1002/ijc.27316 (2012).
93 Smets, L. A. Programmed cell death (apoptosis) and response to anti-cancer drugs. Anticancer Drugs 5, 3-9 (1994).
94 Shimizu, S., Yoshida, T., Tsujioka, M. & Arakawa, S. Autophagic cell death and cancer. Int J Mol Sci 15, 3145-3153 (2014).
95 Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729-740 (2007).
96 Sidler, C., Li, D., Wang, B., Kovalchuk, I. & Kovalchuk, O. SUV39H1 downregulation induces deheterochromatinization of satellite regions and senescence after exposure to ionizing radiation. Front Genet 5, 411 (2014).
97 Zhang, W. et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160-1163 (2015).
98 Bosch-Presegué, L. et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell 42, 210-223 (2011).
99 Gao, M. et al. OSU-03012, a novel celecoxib derivative, induces reactive oxygen species–related autophagy in hepatocellular carcinoma. Cancer Res. 68, 9348-9357 (2008).
100 Shi, Y.-H. et al. Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy 7, 1159-1172 (2011).
101 Qu, K. et al. Cisplatin induces cell cycle arrest and senescence via upregulating P53 and P21 expression in HepG2 cells. Nan Fang Yi Ke Da Xue Xue Bao 33, 1253-1259 (2013).
102 Gartel, A. L. & Tyner, A. L. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol. Cancer Ther. 1, 639-649 (2002).
103 Weiss, R. H. p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell 4, 425-429 (2003).
104 Dong, Y., Chi, S. L., Borowsky, A. D., Fan, Y. & Weiss, R. H. Cytosolic p21Waf1/Cip1 increases cell cycle transit in vascular smooth muscle cells. Cell. Signal. 16, 263-269 (2004).
105 Asada, M. et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J. 18, 1223-1234 (1999).
106 Weiss, R. H. et al. p21 is a prognostic marker for renal cell carcinoma: implications for novel therapeutic approaches. J. Urol. 177, 63-68; discussion 68-69 (2007).
107 Winters, Z. E. et al. Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer. association with prognosis. Eur. J. Cancer 37, 2405-2412 (2001).
108 Biankin, A. V. et al. Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res. 61, 8830-8837 (2001).
109 Inoue, H., Hwang, S. H., Wecksler, A. T., Hammock, B. D. & Weiss, R. H. Sorafenib attenuates p21 in kidney cancer cells and augments cell death in combination with DNA-damaging chemotherapy. Cancer Biol. Ther. 12, 827-836 (2011).
110 Ding, H. et al. OSU03012 activates Erk1/2 and Cdks leading to the accumulation of cells in the S‐phase and apoptosis. Int. J. Cancer 123, 2923-2930 (2008).
111 Basu, A. & Krishnamurthy, S. Cellular responses to Cisplatin-induced DNA damage. Journal of nucleic acids 2010 (2010).
112 Qu, K. et al. Cisplatin induces cell cycle arrest and senescence via upregulating P53 and P21 expression in HepG2 cells. Nan Fang Yi Ke Da Xue Xue Bao 33, 1253-1259 (2013).
113 Wang, P. et al. Cisplatin induces HepG2 cell cycle arrest through targeting specific long noncoding RNAs and the p53 signaling pathway. Oncol. Lett. 12, 4605-4612 (2016).
114 Bestebroer, J., V'kovski, P., Mauthe, M. & Reggiori, F. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic 14, 1029-1041 (2013).
115 Lee, I. H. et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336, 225-228 (2012).
116 Maskey, D. et al. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nature communications 4, 2130 (2013).
117 Li, J. et al. A structurally optimized celecoxib derivative inhibits human pancreatic cancer cell growth. J. Gastrointest. Surg. 10, 207-214 (2006).
118 Bhola, N. E. et al. Antitumor mechanisms of targeting the PDK1 pathway in head and neck cancer. Mol. Cancer Ther. 11, 1236-1246 (2012).
119 Zhu, J. et al. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res. 64, 4309-4318 (2004).
120 Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378-390 (2008).
121 Liu, L. et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66, 11851-11858 (2006).
122 Liu, L.-p., Ho, R. L., Chen, G. G. & Lai, P. Sorafenib inhibits hypoxia-inducible factor-1α synthesis: implications for anti-angiogenic activity in hepatocellular carcinoma. Clin. Cancer Res. 18,5662-5671 (2012).
123 Zhai, B. et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol. Cancer Ther. 13, 1589-98 (2014).
124 Zhang, C.-z., Wang, X.-d., Wang, H.-w., Cai, Y. & Chao, L.-q. Sorafenib inhibits liver cancer growth by decreasing mTOR, AKT, and PI3K expression. Journal of Balkan Union of Oncology 20, 218-222 (2015).
125 Zhao, J., Zhai, B., Gygi, S. P. & Goldberg, A. L. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc. Natl. Acad. Sci. U. S. A. 112, 15790-15797 (2015).
126 Wang, S. et al. Sorafenib suppresses growth and survival of hepatoma cells by accelerating degradation of enhancer of zeste homolog 2. Cancer Sci. 104, 750-759 (2013).
127 Chen, L. et al. MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output. The EMBO journal 29, 2538-2552 (2010).
128 Watson, G. et al. SUV39H1/H3K9me3 attenuates sulforaphane-induced apoptotic signaling in PC3 prostate cancer cells. Oncogenesis 3, e131 (2014).
129 Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495-501 (2014).
130 Wilkinson, K. D. et al. Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry 34, 14535-14546 (1995).
131 Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361 (2000).
132 Wang, D. et al. Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability. Proc Natl Acad Sci U S A. 110, 5516-5621 (2013).