| 研究生: |
卓恩弘 Zhuo, En-Hong |
|---|---|
| 論文名稱: |
吸附水對多孔隙瀝青混凝土溫度梯度影響之研究 Effect of the moisture suction to thermal gradient of the porous asphalt concrete |
| 指導教授: |
楊士賢
Yang, Shih-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 熱島效應 、透水性鋪面 、多孔隙瀝青混凝土 、氧化碴 、熱性質 、吸附水 、水熱實驗 |
| 外文關鍵詞: | urban heat island, permeable pavement, porous asphalt concrete, oxidated slag, thermal properties, moisture suction, thermal-hydro experiment |
| 相關次數: | 點閱:163 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去數十年中,全球溫度升高和極端氣候影響了人類的生活,在都市因人口稠密、大量的建築物和不透水路面引起了熱島效應。過去文獻研究不同路面類型對城市熱島效應之影響,使用透水性路面的好處包括減少噪音、管理雨水徑流、改善水質與減緩熱島效應。多孔瀝青混凝土(Porous Asphalt Concrete)是常用於透水性路面之表面材料,過去研究顯示PAC可以降低鋪面溫度,並進一步考量水分含量在鋪面中之影響,與對水的微蒸發過程和其對減少路面溫度之影響進行數值模擬。然而,很少研究著重在實驗上量化多孔瀝青混凝土中溫度和水分含量變化之耦合效應。
本研究主旨在研究微蒸發和熱性質對多孔瀝青混凝土溫度之影響。在這項研究中進行了實驗室的模擬實驗,實驗試體用了四種不同混合料,兩種不同比例的氧化碴摻入PAC(80%和50%)、天然粒料的PAC和天然粒料的密級配瀝青混凝土(DGAC)。使用鹵素燈模擬太陽光照射,並設計了全乾狀態和吸水飽和條件下之試體,以模擬PAC之不同濕度條件並測量PAC之溫度梯度、熱性質、蒸發率與計算熱通量。
結果顯示試體在無水條件下,PAC表面溫度比DGAC高,這是因為PAC熱傳導係數低不易將熱能傳遞至深層,使得熱量聚集在表面,但在降溫方面PAC卻比DGAC快,可以想像在晚上時PAC能快速降回環境溫度,使夜晚空氣溫度較為舒適,而在含水狀態下,PAC能吸附較多水分並利於蒸發冷卻,有效降低鋪面溫度,而其中PAC-80OS降溫表現為最佳,由於使用了氧化碴,它比一般天然粒料之熱傳導係數大所以在導熱過程較快,是能多加利用之材料。
The global temperature increase and extreme climate have significantly influenced human life in the past decade. This phenomenon is especially severe in the urban area since the heat island effect due to densely populated buildings and impermeable road pavements are more prominent. Numerous studies have been conducted in the past on the effect of pavement types concerning the urban heat island and one promising solution is using the permeable pavement. The benefit of using permeable pavement includes reducing noise, managing rainwater runoff volume, improving water quality, and reducing the impact of heat islands effect. Porous asphalt concrete (PAC) is a commonly used surface material for permeable pavement. Studies in the past have shown that PAC can cool the pavement temperature as a result of increased air voids. Some studies further incorporated moisture content in the previous concrete and numerically model the micro evaporation process of water and its effect to alleviate the pavement temperature. However, few studies that focused on experimentally quantifying the coupling effect of temperature and moisture content variation in the porous asphalt concrete.
This study was aimed to investigate the effect of the micro-evaporation and thermal properties to the temperature of porous asphalt concrete. A laboratory-simulated thermal-hydro experiment was performed in this study with four types samples were used different mixtures, two different proportions of oxidated slag incorporated PAC (80% and 50% slag), PAC with natural aggregate, and dense grade asphalt concrete with natural aggregate. Solar energy was simulated using infrared light and scenarios including 0% moisture and suction-water saturate conditions were designed to simulate different moisture conditions of PAC and time-series thermal and moisture properties of PAC were measured. The water evaporation rate, heat flux, the gradient of temperature in the PAC slab were measured.
The results show that the surface temperature of PAC is higher than DGAC in dry conditions. This is because the low thermal conductivity of PAC is difficult to transfer heat energy to the deep layer, causing heat to accumulate on the surface. But PAC is cool down faster than DGAC , which can be imagined at night PAC can quickly cooling to the ambient temperature and making the night air temperature more comfortable, while in a wet conditions, PAC can absorb more water and facilitate evaporative cooling, effectively reducing the pavement temperature, moreover PAC-80OS has the best cooling performance, cause using the oxidated slag, which has a larger thermal conductivity than general natural aggregates, so the heat conduction process is faster, and this material can be used in PAC pavement.
英文文獻
[1]A.V. Novo, E. Gomez-Ullate, J.R. Bayon, D. Castro-Fresno, J. Rodriguez-Hernandez. (2010). Monitoring and Evaluation of Thermal Behaviour of Permeable Pavements Under the Northern Spain Climate. 7th International Conference on Sustainable Techniques and Strategies for Urban Water Management.
[2]Berg R, Quinn W. Use of light colored surface to reduce seasonal thaw penetration beneath embankments on permafrost. In: Proceedings of the second international symposium on cold regions engineering. University of Alaska, (1978). p. 86–99.
[3]Doulos, L., Santamouris, M., Livada, I., (2004). Passive cooling of outdoor urban
spaces: the role of materials. Sol. Energy 77 (2), 231-249.
[4]Hassn, A., Chiarelli, A., Dawson, A., & Garcia, A. (2016). Thermal properties of asphalt pavements under dry and wet conditions. Materials and Design, 91, pp. 432-439.
[5]I.J. Huddleston, H. Zhou, R.G. Hicks .(1991). Performance evaluation of open-graded Asphalt concrete mixtures used in Oregon. J. Assoc. Asphalt Paving Technol., 60 , pp. 19-42.
[6]Iwata, H., Watanabe, T., and Saito, T. (2002). Study on the Performance of Porous Asphalt Pavement on Winter Road Surface Conditions. Proceedings of the Xlth PIARC International Winter Road Congress 2002, Sapporo, Japan.
[7]K. Rahn, M. Hein, M. Dougherty, J. Gandy. (2015). The contribution of pavements to urban heat islands. 51 st ASC Annual International Conference Proceedings,Alabama : Associated Schools of Construction Auburn University.
[8]Li, H. (2012). Evaluation of cool pavement strategies for heat island mitigation.
[9]Li, H., Harvey, J., & Jones, D. (2013). Cooling effect of permeable asphalt pavement under dry and wet conditions. Transportation Research Record, 3(2372), pp. 97-107. doi:http://dx.doi.org/10.3141/2372-11
[10]Li, H., Harvey, J., Ge, Z. (2014). Experimental investigation on evaporation rate for enhancing evaporative cooling effect of permeable pavement materials. Construction and Building Materials, 65, pp. 367-375.
[11]Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522-538. doi:http://dx.doi.org/10.1016/j.jenvman.2017.03.095
[12]Pomerantz, M., Akbari, H., Chang, S.-C., Levinson, R., Pon, B., (2003). Examples of cooler reflective streets for urban heat-island mitigation: Portland cement concrete and chip seals. Lawrence Berkeley National Laboratory, Claifornia.
[13]Pourshams-Manzouri, T. (2013). Pavement temperature effects on overall urban heat island. Retrieved from https://www.proquest.com/docview/1494330603?accountid=12719
[14]Qin, Y., & Hiller, J. E. (2014). Understanding pavement-surface energy balance and its implications on cool pavement development. Energy and Buildings, 85, pp.389-399. doi:http://dx.doi.org/10.1016/j.enbuild.2014.09.076
[15]Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island-A review of the actual developments. Renewable & Sustainable Energy Reviews, 26, pp. 224-240. doi:http://dx.doi.org/10.1016/j.rser.2013.05.047
[16]Stempihar, J. J., Pourshams-Manzouri, T., Kaloush, K. E., & Rodezno, M. C. (2012). Porous asphalt pavement temperature effects for urban heat island analysis. Transportation Research Record. 1(2293), 123-130. doi:http://dx.doi.org/10.3141/2293-15
[17]Yang, J., Wang, Z.-H., Kaloush, K.E., 2015. Environmental impacts of reflective materials: is high albedo a ‘silver bullet’ for mitigating urban heat island? Renew. Sust. Energy Rev. 47 (0), 830-843.
中文文獻
[1]危時秀(2003),普通混凝土熱傳導性質之研究,碩士論文,中原大學土木工程研究所。
[2]行政院公共工程委員會(2013),多孔隙瀝青混凝土鋪面施工綱要規範,行政院。
[3]邱英浩、汪至佳、江志成(2014),植栽級透水鋪面對街道表面溫度之模擬,台灣建築學會,第88期,第61~78頁。
[4]徐敏晃、涂哲維(2016),電弧爐煉鋼爐碴在利用與管理新訊,中國土木水利學會,第43卷,第4期,第12~16頁。
[5]財團法人台灣營建研究院(2017),電弧爐煉鋼氧化碴瀝青混凝土鋪面試行使用手冊。
[6]張堡清(2014),透水性鋪面保水與溫差成效之評估-以中壢市龍慈路為例,碩士論文,國立中央大學土木工程研究所。
[7]陸象豫(2016),都市熱島效應,林業研究專訊,第23卷,第2期。
[8]楊志祥(2006),電弧爐氧化碴資源化於透水性混凝土地磚之可行性研究碩士論文,朝陽科技大學環境工程與管理研究所。