簡易檢索 / 詳目顯示

研究生: 張天益
Chang, Tien-I
論文名稱: 利用溶膠-凝膠法製備鋯鈦酸鉛陶瓷塊材與薄膜之研究
Lead Zirconium Titanium Ceramics and Films Derived by the Sol-Gel Process
指導教授: 黃肇瑞
Huang, Joy-Lay
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 159
中文關鍵詞: 溶膠-凝膠法鋯鈦酸鉛
外文關鍵詞: sol-gel, PZT
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用醋酸鉛、正丙烷氧鋯、異丙烷氧鈦當作起始原料,以溶膠-凝膠法來製備鋯鈦酸鉛(PZT)溶液,並且將此溶液分別製得PZT粉末、塊材與薄膜。系統性的探討不同的粉末乾燥條件對於後段熱處理時相變行為的影響,並研究升溫速率和高分子添加劑對PZT薄膜微結構的影響。

    在PZT粉末、塊材方面發現,在150oC/10小時乾燥條件下的L.T粉末含有較多的碳質材料,因此發生還原反應而導致鉛元素從PZT粉末中析出,進而降低PZT組成的均勻性和PZT鈣鈦礦的含量。

    相對的,在研究中利用醋酸鉛裂解溫度當乾燥條件(300oC/1、10小時),發現300oC裂解溫度乾燥下的粉末具有較高比例的PZT鈣鈦礦相,且具較低鈣鈦礦相形成能障(125 kJ/mol),實驗結果亦發現鈣鈦礦相變的機構會因300oC裂解溫度乾燥下,由成核控制變成成長控制。由H.T 10粉末製得的PZT塊材可降低燒結燒溫度,且最佳的介電性發生於1000 oC 6小時燒結下,此時PZT塊材具有優良的介電常數(1080)和低介電損(0.7 %)。

    在PZT薄膜方面發現,在無添加防裂劑下利用慢速升溫速率(1oC/分)通過低溫預熱區,可成功製得細晶、緻密、無裂紋、纯鈣鈦礦結晶的PZT薄膜。並發現不同升溫速率將導致不同微結構的PZT薄膜。

    另外,若添加PVA溶液(含有PVA、甘油和水)當高分子添加劑後,藉由PVA溶液的幫助下,可成功地降低鈣鈦礦相的形成溫度至500 oC。並且發現PVA的螯合效應會造成特殊的圓形PZT核-殼團簇形成,其中核的成分是富鉛的,而殼的成分則是富鋯和鈦的。並且,此圓形狀PZT核-殼團簇可當作異質成核點以降低成核能障,使得添加PVA的多層PZT薄膜為細晶的微結構。

    In this study, lead acetate、zirconium n-propoxide and titanium iso-propoxide were used as the precursors, and the PZT solution was successfully prepared by the sol-gel process. The PZT powders、bulks, and thin films were all derived from the PZT solution. Effects of drying conditions on the thermal behaviors during the post heat-treatment were discussed; the influences of the heating rate and the addition of PVA solution on the PZT films were also discussed.

    In the section of PZT powders and bulks, the 150oC/10h drying condition made the PZT powders contain more carbonaceous materials, which caused the reduction reaction to form the Pb-partitioning. It reduced the homogeneity in composition and the PZT content.

    On the other hand, the 300oC drying conditions made PZT powders contain higher PZT content, and lower perovskite formation energy barrier (125 kJ/mol) than L.T powders, besides that the 300oC drying condition changed the perovskite formation mechanism to growth-control reaction. The sintering temperature of the PZT ceramics fabricated by the H.T 10 powders can be reduced to 1100oC for 6h, and the superior dielectric constant (1080) and low dielectric loss (0.7 %) can be obtained.

    In the section of PZT films, by the slow heating rate (1oC/min) during the pre-heating region, the fined-grain、dense、crack-free、completely crystallized perovskite PZT films were successfully obtained.

    On the other hand, with the enhance of PVA solution (PVA、glycerol, and water), the perovskite formation temperature was successfully reduced to 500oC. The chelating effects of PVA solutions induced the special core-shell structured clusters, which contain Pb-rich core and Zr-, Ti-rich shell. The rounded clusters served as heterogeneous sites to reduce the nucleation barrier, and the crck-free、fined grain、multi-layer PZT films were thus obtained.

    中文摘要…………………………………………………………… Ⅰ 英文摘要…………………………………………………………… Ⅲ 誌謝………………………………………………………………….Ⅴ 總目錄……………………………………………………………… Ⅵ 表目錄……………………………………………………………… Ⅸ 圖目錄……………………………………………………………… Ⅹ 第一章 緒論…………………………………………………1 1-1 研究背景……………………………………………… 1 1-2 研究動機與目的…………………………………………4 1-3 論文架構………………………………………………4 第二章 理論基礎 ………………………………………………6 2-1 鐵電材料……………………………………………………. 6 2-2 PZT之晶體構造與性質…................................................. 13 2-3 PZT之製程…………………………………………………… 19 2-4 溶膠-凝膠法………………………………………25 2-4-1 溶膠-凝膠法的原理………………………………………. 28 2-4-1-1 水解……………………………………………………. 33 2-4-1-2 聚縮合…………………………………………………… 36 2-4-1-3 老化與凝膠化…………………………………………… 39 2-4-2 影響溶膠-凝膠法的變因……………………………………40 第三章以溶膠-凝膠法製備PZT粉末與塊材………………………50 3-1 簡介…………………………………………………………… 50 3-2 實驗製程……………………………………………………… 53 3-2-1 PZT前趨溶液的製備…………………………………………53 3-2-2 PZT粉末的製備………………………………………………53 3-2-3 PZT陶瓷塊材的製備…………………………………………56 3-2-4 分析儀器………………………………………………………56 3-3 結果與討論 …………………………………………………………. 59 3-3-1 PZT前趨溶液的化學反應與鍵結………………………… 59 3-3-2 H.T 1、L.T粉末型態、化學鍵結、熱行為與相變…… 65 3-3-3 H.T 10、H.T 1粉末的相變與熱行為…………………… 84 3-3-4 H.T 10粉末其製得的PZT陶瓷塊材微結構、相組成與電性質 …………………………………………………………………………92 第四章 以溶膠-凝膠法製備PZT薄膜………………………………102 4-1 簡介…………………………………………………………… 102 4-2 實驗製程……………………………………………………… 106 4-2-1 PZT前趨溶液與基板的製備……………………………… 106 4-2-2 不同升溫速率下PZT薄膜的製備………………………109 4-2-3 添加PVA溶液的PZT薄膜製備……………………111 4-2-4 分析儀器……………………………………………………114 4-3結果與討論……………………………………………………114 4-3-1 升溫速率對PZT薄膜的影響……………………………114 4-3-2 PVA溶液的添加對PZT薄膜的影響………………………127 第五章 結論……………………………………………………………144 參考文獻………………………………………………………………147 作者簡歷………………………………………………………………156 研究成果目錄…………………………………………………………157

    [1] K. D. Budd, S. K. Dey, and D. A. Payne, “Sol-Gel Processing of PbTiO3, PZT, and PLZT film”, Br. Ceram. Proc., 36, 107-121 (1985).
    [2] M. Zhang, I. M. Miranda Salvado, P. M. Vilarinho, “Synthesis and Characterization of Lead Zirconate Titanate Fibers Prepared by the Sol–Gel Method: The Role of the Acid”, J. Am. Ceram. Soc., 86, 775-781 (2003).
    [3] A. D. Polli, F. F. Lange, “Pyrolysis of Pb(Zr0.5Ti0.5)O3 precursors: Avoiding lead partitioning”, J. Am. Ceram. Soc., 78, 3401-3404 (1995).
    [4] S. S. Hirano, T. Yogo, K. Kikuta, Y. Araki, M. Saitoh, and S. Ogasahara, “Synthesis of Highly Oriented Lead Zirconate-Lead Titanate Film using Metallo-organics”, J. Am. Ceram. Soc., 75, 2785–2789 (1992).
    [5] Y. L. Tu, M. L. Calzada, N. J. Phillips, and S. J. Milne, “Synthesis and Electrical Characterization of Thin Films of PT and PZT Made from a Diolbased Sol-Gel Route”, J. Am. Ceram. Soc., 79, 441–448 (1996).
    [6] K. Kozuka and A. Higuchi, “Single-Layer Submicron-Thick BaTiO3 Coatings from Poly (vinylpyrrolidone)-Containing Sols: Gel-to-Ceramic Film Conversion, Densification, and Dielectric Properties”, J. Mater. Res., 16, 3116–3123 (2001).
    [7] L. Jiankang and Y. Xi, “Microstructure and Electrical Properties of Pb(Zr0.52Ti0.48)O3 Ferroelectric Films on Different Bottom Electrodes”, Mater. Lett., 58, 3447–3450 (2004).
    [8] A. D. Polli, F. F. Lange, and C. G. Levi, “Metastability of the Fluorite, Pyrochlore, and Perovskite Structures in the PbO–ZrO2–TiO2 System”, J. Am. Ceram. Soc., 83 [4], 873-881 (2000).
    [9] C. Sanchez, J. Livage, M. Henry, and F. Babonneau, “Chemical Modification of Alkoxide Precursors”, J. Non-Cryst. Solids 100, 65-76 (1988).
    [10] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, 2nd edition, pp.135–56. Academic, New York, 1971.
    [11] G. H. Haertling, “Ferroelectric Ceramics: History and Technology”, J. Am. Ceram. Soc., 82 [4], 797-818 (1999).
    [12] Takashi Yamamoto, and Kiyoshi Okazaki, “Microstructure and Dielectric Properties at the Morphotropic Phase Boundary of PbTiO3-PbZrO3 System”, Ferroelectrics, 81, 331-334 (1988).
    [13] S. Stotz, ”Shift of the Morphotropic Phase Boundary in the PZT System under the Influence of Electric Fields and Uniaxial Stress”, Ferroelectrics, 76, 132-132 (1987).
    [14] P. G. Lucuta, and F. Vasiliu, “SEM, SAED and TEM Investigation of Domain Structure in PZT Ceramics at Morphotropic Phase Boundary”, App. Phys., A37, 237-242 (1985).
    [15] F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, M. Fiflarz, “Homogeneous and Hetergenous Nucleations in the Polyol Process for the Preparation of Micron and Submicron Size Metal Particles”, Solid State Ionics, 32/33, 198-205 (1989).
    [16] B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962).
    [17] “Sol-gel technologies and their products”, http://www.chemat.com/, CHEMAT Technology, Inc.
    [18] 陳慧英,“溶膠凝膠法在薄膜製備上之應用”,化工技術,第80期,11月 (1999).
    [19] 謝坤龍,“釟銀合金/氧化鋁複合膜之特性研究:以溶膠凝膠法修是基材孔徑之探討”,國立成功大學化學工程研究所碩士論文 (2000).
    [20] C. J. Binker, G. W. Scherer, “Sol-Gel-Glass: I. Gelation and Gel Structure”, J. Non-Cryst. Soilds, 70, 301-322 (1985).
    [21] D. C. Bradley, R. C. Mehrotra, D. P. Gaur, “Metal Alkoxide”, Academic Press, London (1978).
    [22] J. Zarzycki, J. Phalipon, “Synthesis of Glasses from Gels”, J. Mater. Sci., 17, 3371-3379 (1982).
    [23] C. Jeffrey Brinker, George W. Scherer, “Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing”, Academic Press, Inc. (1990).
    [24] S. Y. Chen, ”Cracking, Texture Evolution and Electrical Properties of Ferroelectric Thin Film”, Ph. D. Thesis. Institute of Materials Science and Engineering, the University of Michigan, 1994.
    [25] G. R. Fox, J. H. Adair, and R. E. Newnham, “Effects of pH and H2O2 upon Coprecipitated PbTiO3 Powders”, J. Mater. Sci., 26, 1187-1191 (1991).
    [26] M. Nogami, and Y. Moriya, “Glass Formation Through Hydrolysis of Si(OC2H5)4 with NH4OH and HCl Solution”, J. Non-Cryst. Solids, 37, 191-201 (1980).
    [27] L. M. Sheppard, ”Advances in Processing of Ferroelectric Thin Films”, Ceramic Bulletin, 71[1], 85-95 (1992).
    [28] C. D. E. Lakeman, J. F. Campion, and D. A. Payne, “Factors Affecting the Sol-Gel Processing of PZT Thin Layers”, pp. 413-439 in Ceramic Transaction, Vol. 25, Ferroelectric Films. Edited by A. S. Bhalla and K. M. Nair, American Ceramic Society, We sterville, OH, 1992.
    [29] H. Schmidt, ”Chemical Processing of Advanced Materials”, Edited by L. L. Hench, and J. K. West, John Wiley & Sons, New York, p.727 (1992).
    [30] H. Kanai, O. Furukawa, H. Abe and Y. Yamashita, “Dielectric Properties of (Pb1-xXx) (Zr0.7Ti0.3)O3 (X = Ca, Sr, Ba) Ceramics”, J. Am. Ceram. Soc. 77 (1994) 2620–2624.
    [31] D. V. Taylor and D. Damjanovic, “Piezoelectric Properties of Rhombohedral Pb(Zr, Ti)O3 Thin Films with (100), (111), and "Random" Crystallographic Orientation”, Appl. Phys. Lett. 76, 1615–1617 (2000).
    [32] L. M. Levinson, ” Electric Ceramics Properties, Devices, Applications”, (Marcel Dekker, New York, 1987) pp. 371–492.
    [33] T. Mizuno, H. Nagata, and S. Manabe, “Attempts to Avoid Cracks During Drying”, J. Non-Cryst. Solids 100, 236-240 (1988).
    [34] S. Yoda, and S. Ohshima, “Supercritical Drying Media Modification for Silica Aerogel Preparation”, J. Non-Cryst. Solids 248, 224-234 (1999).
    [35] S. Rajeshkumar, G. M. Anilkumar, S.Ananthakumar, and K. G. K. Warrier, “Role of Drying Techniques on the Development of Porosity in Silica Gels”, J. Porous Mater. 5, 59-63 (1998).
    [36] C. D. E. Lakeman and D. A. Payne, “Processing Effects in the Sol-Gel Preparation of PZT Dried Gels, Powders, and Ferroelectric Thin Layers”, J. Am. Ceram. Soc., 75, 3091–3096 (1992).
    [37] L. C. Klein, “Sol-Gel Optics: Processing and Applications”, (Kluwer Academic Publishers, London, 1994) pp. 260–264.
    [38] K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination compounds”, (fourth edition, John Wiley and Sons, New York, 1986) pp. 231–233.
    [39] J. Livage, C. Canchez, M. Henry and S. Doeuff, “The Chemistry of the Sol-Gel Process”, Solid State Chem., 32/33, 633–638 (1989).
    [40] W. D. Yang, “PZT/PLZT Ceramics Prepared by Hydrolysis and Condensation of Acetate Precursors”, Ceram. Inter., 27, 373–384 (2001).
    [41] S. Doeuff, M. Honry, C. Sanchez and J. Livage, “Hydrolysis of Titanium Alkoxides: Modification of the Molecular Precursor by Acetic acid”, J. Non-Cryst. Solids 89, 206–216 (1987).
    [42] M. A. Mohamed, S. A. Halawy, and M. M. Ebrahim, “Non-Isothermal Kinetic and Thermodynamic Study of the Decomposition of Lead Acetate Trihydrate”, Thermochimica Acta 236, 249-262 (1994).
    [43] R. Merkle, and H. Bertagnolli, “Investigation of the Pyrolysis of Lead Zirconate Titanate Gels with Coupled Differential Thermal Analysis, Thermogravimetry and Infrared Spectroscopy”, J. Mat. Sci., 33, 4341-4348 (1998).
    [44] P. R. Coffman, C. K. Barlingay, A. Gupta and S. K. Dey, “Structure Evolution in the PbO-ZrO2-TiO2 Sol-Gel System: Part II – Pyrolysis of Acid and Base-Catalyzed Bulk and Thin Film Gels” J. Sol-gel Sci. and Tech., 6, 83–106 (1996).
    [45] H. Hirashima, E. Onishi and M. Nakawaga, “Preparation of PZT Powders from Metal Alkoxides”, J. Non-Cryst. Solids 121, 404–406 (1990).
    [46] C. T. Lin, B. W. Scanlan, J. D. Mcneill, J. S. Webb and L. Li, “Crystallization Behavior in a Low Temperature Acetate Process for Perovskite PbTiO3, Pb(Zr,Ti)O3, and (Pb1-x,Lax)(Zry,Ti1-y)1-x/4O3 bulk powders”, J. Mater. Res., 7, 2546–2554 (1992).
    [47] B. Malic, N. Setter, K. Brooks, M. Kosec, and G. Drazic, “Acetic Acid based Sol-Gel PLZT Thin Films: Processing and Characterization”, J. Sol-Gel Sci. Tech., 13, 833-836 (1998).
    [48] B. Malic, “Preparation of PZT Film and Powder by Sol-Gel Technique using Ti- and Zr-Alkoxides and a Novel Pb-Precursor; Pb(NO3)2 1.5EO3”, J. Sol-Gel Sci. Tech., 13, 865-868 (1998).
    [49] H. E. Kissinger, “Reaction kinetics in differential thermal analysis”, Anal. Chem., 29, 1702-1706 (1957).
    [50] Y. Z. Chen, and J. Ma, J. X. Zhang, “Thermal Analysis of the Seeded Lead Zirconate Titanate Sol–Gel System”, Mater. Lett., 57, 3392-3396 (2003).
    [51] W. W. Wendlandt, “Thermal Analysis”, third ed., Wiley, New York, 1986.
    [52] C. Sanchez, J. Livage, M. Henry, and F. Babonneau, “Chemical Modification of Alkoxide Precursors”, J. Non-Cryst. Solids 100, 65-76 (1988).
    [53] A. Wu, I.M. Miranda Salvado, P.M. Vilarinho, J.L. Baptista, “Lead Zirconate Titanate prepared from Different Zirconium and Titanium Precursors by Sol–Gel”, J. Am. Ceram. Soc., 81, 2640-2644 (1998).
    [54] S. Y. Chen, and I. W. Chen, “Temperature-Time Texture Transition of Pb(Zr1-xTix)O3 Thin Films: I, Role of Pb-Rich Intermediate Phases”, J. Am. Ceram. Soc., 77[9], 2332-2336 (1994).
    [55] C. K. Kwok, and S. B. Desu, “Low Temperature Perovskite Formation of Lead Zirconate Titanate Thin Films by a Seeding Process”, J. Mat. Res., 8, 339-44 (1993).
    [56] A. Boutarfaia, C. Boudaren, A. Mousser, and S. E. Bouaoud, “Study of Phase Transition Line of PZT Ceramics by X-ray Diffraction”, Ceram. Inter., 21, 391-4 (1995).
    [57] Z. G. Zhu, B. S. Li, W. Z. Zhang, and Q. R. Yin, “Microstructure and Piezoelectric Properties of PMS-PZT Ceramics”, Mat. Sci. and Eng., B 117, 216-20 (2005).
    [58] M. R. Soares, A. M. R. Senos, and P. Q. Mantas, ”Phase Coexistence Region and Dielectric Properties of PZT Ceramics”, J. Euro. Ceram. Soc., 20, 321-34 (2000).
    [59] X. S. Li, T. Tanaka, and Y. Suzuki, “Preferred Orientation and Ferroelectric Properties of Lead Zirconate Titanate Thin Films”, Thin Solid Films, 375, 91–94 (2000).
    [60] K. Amanuma, T. Hase, and Y. Miyaska, “Preparation and Ferroelectric Properties of SrBi2Ta2O9 Thin Films”, Appl. Phys. Lett., 66, 221–223 (1995).
    [61] R. Dat, J. K. Lee, O. Auciello, and A. I. Kingon, “Metalorganic Chemical Vapor Deposition of Ferroelectric SrBi2Ta2O9 Thin Films”, Appl. Phys. Lett., 68, 616–618 (1996).
    [62] W. Gong, J. F. Li, X. Chu, and L. Li, “Effect of Pyrolysis Temperature on Preferential Orientation and Electrical Properties of Sol-Gel derived Lead Zirconate Titanate Films”, J. Euro. Ceram. Soc., 24, 2977–2982 (2004).
    [63] S. Y. Chen and I. W. Chen, “Texture Development, Microstructure Evolution, and Crystallization of Chemically derived PZT Thin Films”, J. Am. Ceram. Soc., 81, 97–105 (1998).
    [64] Z. Huang, Q. Zhang, and R. W. Whatmore, “Structure Development in the Early Stages of Annealing of Sol-Gel prepared Lead Zirconate Titanate Thin Films”, 86, 1662–1669 (1999).
    [65] K. G. Brooks, R. D. Klissurska, P. Moeckli, and N. Setter, “Influence of Texture on the Switching Behavior of Pb(Zr0.70Ti0.30)O3 Sol-Gel derived Thin Films”, J. Mat. Res., 12, 531–540 (1997).
    [66] C. J. Kim, D. S. Yoon, Z. T. Jiang, and K. No, “Investigation of the Drying Temperature Dependence of the Orientation in Sol-Gel Processed PZT Thin Films”, J. Mater. Sci., 32, 1213–1219 (1997).
    [67] Yimin Liu, and Pradeep P. Phule, “Nucleation- or Growth-Controlled Orientation Development in Chemically derived Ferroelectric Lead Zirconate Titanate (Pb(ZrX Ti1-X)O3, X = 0.4) Thin Films”, J. Am. Ceram. Soc., 79, 495–498 (1996).
    [68] Yimin Liu, and Pradeep P. Phule, “Sequence of Phase Formation in Chemically derived Ferroelectric Lead Zirconate Titanate Pb(Zr0.4Ti0.6)O3 Thin Films”, J. Am. Ceram. Soc., 80, 2410–2412 (1997).
    [69] C. W. Law, K. Y. Tong, J. H. Li, and K. Li, “Effect of Pyrolysis Temperature on the Characteristics of PZT Films deposited by the Sol-Gel Method”, Thin Solid Films 335, 220–224 (1998).
    [70] I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of Transmission Electron Microscopy for the Characterization of Rapid Thermally Annealed, Solution-Gel, Lead Zirconate Titanate Films”, J. Am. Ceram. Soc., 77, 1209–1216 (1994).
    [71] K. G. Brooks, I. M. Reaney, R. Klissurska, Y. Huang, L. Bursill, and N. Setter, “Orientation of Rapid Thermally Annealed Lead Zirconate Titanate Films on (111) Pt Substrates”, J. Mater. Res., 9, 2540–2553 (1994).
    [72] G. W. Scherer, "Sintering of Sol–Gel Films", J. Sol–Gel Sci. Technol., 8 [1–3], 353–363 (1997).
    [73] S. K. Saha and P. Pramanik, "Synthesis of Nanophase PLZT(12/40/60) Powder by PVA Solution Technique”, Nanostruc. Mater., 8 [1], 29–36 (1997).
    [74] R. Wang, Q. Wang, and L. Li, "Evaporation Behaviour of Water and Its Plasticizing Effect in Modified Poly(Vinyl Alcohol) Systems", Poly. Inter., 52, 1820–1826 (2003).
    [75] A. Sen and P. Pramanik, "A Chemical Synthetic Route for the Preparation of Fine-GrainedMetal Tungstate Powders (M=Ca, Co, Ni, Cu, Zn)", J. Euro. Ceram. Soc., 21, 745–750 (2001).
    [76] C. Koh, S. Tahir, A. Sen, A. Pathak, and P. Pramanik, "Preparation of Nanosized Mixed Oxides Ceramic Powders Using Polyvinyl Alcofol and Polyhydroxyl Organic Compounds", Br. Ceram. Trans., 101 [3], 114–119 (2002).
    [77] S. Biswas and S. Ram, "Morphology and Stability in a Half-Metallic Ferromagnetic CrO2 Compound of Nanoparticles Synthesized Via a Polymer Precursor", Chem. Phys., 306, 163–169 (2004).
    [78] S. Ram and T. K. Mandal, "Synthesis and Characterization of Thin Ferroelectric PbZr0.52Ti0.48O3 Fibrils", J. Am. Ceram. Soc., 80[12] ,3444–3448 (2005).
    [79] T. I. Chang, J. L. Huang, J. F. Lin, B. H. Chen, and L.Wu, "Effect of Drying Temperature on the Characteristics of the Lead Zirconium Titanate Powders Prepared by Sol–Gel Process", Mater. Trans., 45, 3150–3155 (2004).
    [80] Y. Shimizu and T. Murata, "Sol–Gel Synthesis of Perovskite-Type Lanthanum Manganite Thin Films and Fine Powders Using Metal Acetylacetonate and Poly(Vinyl Alcohol)", J. Am. Ceram. Soc., 80 [10], 2702–2704 (1997).
    [81] G. T. Park, C. S. Park, J. J. Choi, and H. E. Kim, "Orientation Control of Sol–Gel-Derived Lead Zirconate Titanate Films by Addition of Polyvinyl Pyrrolidone", J. Mater. Res., 20 [4], 882–888 (2005).
    [82] S. Ram and T. K. Mandal, "New Polymer PrecursorMethod for Synthesizing PbZrxTi1-xO3, x≦1, Nanoceramics at Low Temperature", J. Mater. Sci. Lett., 22, 675–678 (2003).
    [83] A. Etin, G. E. Shter, S. Baltianski, and S. Grander, "Controlled Elemental Depth Profile in Sol–Gel-Derived PZT Films", J. Am. Ceram. Soc., 89 [8], 2387–2393 (2006).

    下載圖示 校內:2008-07-04公開
    校外:2008-07-04公開
    QR CODE