| 研究生: |
周俊吉 Chou, Chun-Chi |
|---|---|
| 論文名稱: |
紫外線奈米光電感測元件技術開發與評估 Development and Evaluation of ultraviolet nano-optoelectronic sensing devices |
| 指導教授: |
施勵行
Shih, Li-Hsing |
| 共同指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 產品策略 、決策分析 、層級分析法 、鋰摻雜 、水熱法 |
| 外文關鍵詞: | Product strategy, Decision analysis, Analytical hierarchy process, Li-doped, Hydrothermal method |
| 相關次數: | 點閱:95 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境品質與健康生活訊息為民眾所關注,透過問卷調查關切健康的面向、戶外及室內環境對健康的影響以及對環境感測器改善的期待,藉由統計分析得出紫外線光電感測器為技術開發對象,期待體積縮小、重量減輕、能隨身攜帶以及價格便宜。在紫外線光電感測元件中,以氧化鋅為材料有幾種方法摻雜鋰,由於各方法各具優缺點,本研究遴選5種常用的方法透過層級分析法(Analytic Hierarchy Process, AHP)決策分析選擇最佳開發策略。選出最佳方法為水熱法,其特色為實驗耗材費用低、主要設備價格低且使用方便。
使用氧化鋅材料之鋰摻雜:在玻璃基材上使用射頻磁控濺鍍法製備25 nm厚的氧化鋅薄膜;以水熱法在70、80和90℃的不同溫度下製備形成摻雜鋰的氧化鋅奈米棒陣列;沉積一層金(Au)交叉指狀膜為電極。經過量測在紫外線激發時開/關電流對比的光電感測器λ約為19.3,其動態響應為顯示可重現且穩定,可以作為適當的紫外線光電感測器元件。當施加5.0 V電壓,紫外線激發時開/關時,當相對濕度高時電流衰減更快,可以作為濕度感測應用。
從環境感測需求選出紫外線感測器為開發策略,針對氧化鋅材料感測元件技術評估選擇出以水熱法摻雜鋰於氧化鋅。透過實作製備其響應以確認適合作為紫外線感測元件,並深入研究此技術用可延伸作為濕度感測使用。本研究主要貢獻在於對半導體製程技術開發選用,藉由問卷之統計分析加上層級分析法的評估。確認選擇後並實際做技術開發以資證明分析與評估之有效性,為元件開發成功之實證案例。
The public pays close attention to environmental and health information, and through statistical analysis of questionnaire surveys, UV photoelectric sensors are the object of technology development. For the ultraviolet photoelectric sensing components, there are several methods for doping lithium with zinc oxide. The hydrothermal method is selected by the hierarchical analysis method, which is characterized by low cost of experimental consumables, low price of main equipment and convenient use.
Lithium doping using zinc oxide material: the zinc oxide film is hydrothermally formed to form a lithium-doped ZnO nanorod array. The photoelectric sensor λ of the on/off current contrast is about 19.3 when excited by ultraviolet light, which can be used as an appropriate UV photoelectric sensor component. Applying 5.0 V voltage when UV is excited, on/off current decays faster when the relative humidity is high, which can be used as a humidity sensing application.
參考文獻
英文部分
Anitha, R., Ramesh, R., Loganathan, R., Vavilapalli, D. S., Baskar, K., & Singh, S. (2018). Large area ultraviolet photodetector on surface modified Si: GaN layers. Applied Surface Science, 435, 1057-1064.
Assuncao, V., Fortunato, E., Marques, A., Aguas, H., Ferreira, I., Costa, M., & Martins, R. (2003). Influence of the deposition pressure on the properties of transparent and conductive ZnO: Ga thin-film produced by rf sputtering at room temperature. Thin Solid Films, 427(1-2), 401-405.
Baruah, S., & Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science and technology of advanced materials.
Bobkov, A., Nalimova, S., & Maximov, A. (2017). Study of sol-gel nanocomposites modified by zinc oxide nanowires. Paper presented at the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus).
Calestani, D., Culiolo, M., Villani, M., Delmonte, D., Solzi, M., Kim, T.-Y., . . . Zappettini, A. (2018). Functionalization of carbon fiber tows with ZnO nanorods for stress sensor integration in smart composite materials. Nanotechnology, 29(33), 335501.
Chang, S.-J., Duan, B.-G., Hsiao, C.-H., Liu, C.-W., & Young, S.-J. (2013). UV enhanced emission performance of low temperature grown Ga-doped ZnO nanorods. IEEE Photonics Technology Letters, 26(1), 66-69.
Chang, Y.-C., Hsu, C.-C., Wu, S.-H., Chuang, K.-W., & Chen, Y.-F. (2018). Fabrication of Cu-doped ZnO nanoneedles on different substrate via wet chemical approach: Structural characterization and photocatalytic performance. Applied Surface Science, 447, 213-221.
Chen, K., Hung, F., Chang, S., Young, S., & Hu, Z. (2011). Effects of crystallization on the optical properties of ZnO nano-pillar thin films by sol-gel method. Current Applied Physics, 11(5), 1243-1248.
Chen, T., Young, S., Chang, S.-J., Hsiao, C., & Wu, S. (2012). Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate. IEEE transactions on electron devices, 60(1), 229-234.
Cho, Y., Ji, H., Kim, H., Yoon, J., & Choi, B. (2018). New insights into mechanism of surface reactions of ZnO nanorods during electrons beam irradiation. Journal of nanoscience and nanotechnology, 18(9), 5996-6000.
Chou, C.-C., Shih, L.-H., & Chang, S.-J. (2020). The study of humidity sensor based on Li-doped ZnO nanorods by hydrothermal method. Microsystem Technologies, 1-5.
Djurišić, A. B., & Leung, Y. H. (2006). Optical properties of ZnO nanostructures. small, 2(8‐9), 944-961.
Dong, J., Osinsky, A., Hertog, B., Dabiran, A., Chow, P., Heo, Y., . . . Pearton, S. (2005). Development of MgZnO-ZnO-AlGaN heterostructures for ultraviolet light emitting applications. Journal of electronic materials, 34(4), 416-423.
Fowler, R. H., & Nordheim, L. (1928). Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119(781), 173-181.
Golden, B. L., Wasil, E. A., & Harker, P. T. (1989). The analytic hierarchy process. Applications and Studies, Berlin, Heidelberg.
Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., . . . Noble, I. (2013). Sustainable development goals for people and planet. Nature, 495(7441), 305-307.
Hamid, H. A., & Çelik-Butler, Z. (2018). Characterization and performance analysis of Li-doped ZnO nanowire as a nano-sensor and nano-energy harvesting element. Nano Energy, 50, 159-168.
Han, L., Zhao, X., Huang, T., Ding, H., & Wu, C. (2019). Comprehensive Study of Phase-Sensitive SPR Sensor Based on Metal–ITO Hybrid Multilayer. Plasmonics, 14(6), 1743-1750.
Hsiao, C.-H., Huang, C.-S., Young, S.-J., Guo, J.-J., Liu, C.-W., & Chang, S.-J. (2013). Optical and structural properties of ga-doped ZnO nanorods. Journal of nanoscience and nanotechnology, 13(12), 8320-8324.
Hsieh, H. N., Chen, J. F., & Do, Q. H. (2015). Applying TRIZ and Fuzzy AHP Based on Lean Production to Develop an Innovative Design of a New Shape for Machine Tools. Information, 6(1), 89-110.
Hsu, C.-L., Hsu, D.-X., Hsueh, T.-J., Chang, S.-P., & Chang, S.-J. (2017). Transparent gas senor and photodetector based on Al doped ZnO nanowires synthesized on glass substrate. Ceramics International, 43(7), 5434-5440.
Hsueh, K.-P., Chiu, H.-C., Sheu, J.-K., & Yeh, Y.-H. (2016). Physical properties of Al-doped MgZnO/AlGaN p–n heterojunction photodetectors. Optical and Quantum Electronics, 48(11), 501.
Hwang, J., Lin, J., & Hwang, S. (2015). Annealing effects on MgZnO films and applications in Schottky-barrier photodetectors. Journal of Physics D: Applied Physics, 48(40), 405103.
Jayakumar, O., Sudakar, C., Persson, C., Sudarsan, V., Naik, R., & Tyagi, A. (2010). Tunable ferromagnetism accompanied by morphology control in Li-doped Zn0. 97Ni0. 03O. The Journal of Physical Chemistry C, 114(41), 17428-17433.
Jeong, S., Park, B., Lee, S.-B., & Boo, J.-H. (2008). Study on the doping effect of Li-doped ZnO film. Thin Solid Films, 516(16), 5586-5589.
Jeong, S., Park, B., Lee, S., & Boo, J.-H. (2005). Structural and optical properties of silver-doped zinc oxide sputtered films. Surface and Coatings Technology, 193(1-3), 340-344.
Ji, L.-W., Hsiao, Y.-J., Young, S.-J., Shih, W.-S., Water, W., & Lin, S.-M. (2014). High-efficient ultraviolet photodetectors based on TiO 2/Ag/TiO 2 multilayer films. IEEE Sensors Journal, 15(2), 762-765.
Joseph, M., Tabata, H., & Kawai, T. (1999). Ferroelectric behavior of Li-doped ZnO thin films on Si (100) by pulsed laser deposition. Applied Physics Letters, 74(17), 2534-2536.
Kim, D.-M., Kim, K.-B., Yoon, S.-Y., Oh, Y.-S., Kim, H.-T., & Lee, S.-M. (2009). Effects of artificial pores and purity on the erosion behaviors of polycrystalline Al2O3 ceramics under fluorine plasma. Journal of the Ceramic Society of Japan, 117(1368), 863-867.
Kim, S., Son, C., Yoon, B., & Park, Y. (2015). Development of an Innovation Model Based on a Service-Oriented Product Service System (PSS). Sustainability, 7(11), 14427-14449.
Kwon, J., Hong, S., Kim, G., Suh, Y. D., Lee, H., Choo, S.-Y., . . . Ko, S. H. (2018). Digitally patterned resistive micro heater as a platform for zinc oxide nanowire based micro sensor. Applied Surface Science, 447, 1-7.
Lai, L.-T., Chang, S.-J., Yang, C.-C., & Young, S.-J. (2018). UV-enhanced 2-d nanostructured ZnO field emitter with adsorbed Pt nanoparticles. IEEE Electron Device Letters, 39(12), 1932-1935.
Lei, S., Tao, C., Li, J., Zhao, X., & Wang, W. (2018). Visible light-induced charge transfer to improve sensitive surface-enhanced Raman scattering of ZnO/Ag nanorod arrays. Applied Surface Science, 452, 148-154.
Li, T. S. (2015). Applying TRIZ and AHP to develop innovative design for automated assembly systems (Retration of vol 46, pg 301, 2010). International Journal of Advanced Manufacturing Technology, 77(9-12), 2289-2289.
Liang, S., Sheng, H., Liu, Y., Huo, Z., Lu, Y., & Shen, H. (2001). ZnO Schottky ultraviolet photodetectors. Journal of crystal Growth, 225(2-4), 110-113.
Liu, C.-W., Chang, S.-J., Hsiao, C.-H., Lo, K.-Y., Kao, T.-H., Wang, B.-C., . . . Wu, S.-L. (2014). Noise properties of low-temperature-grown Co-doped ZnO nanorods as ultraviolet photodetectors. IEEE Journal of Selected Topics in Quantum Electronics, 20(6), 89-95.
Liu, C., Wu, J., Ren, L., Tong, J., Li, J., Cui, N., . . . Meenan, B. (2004). Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Materials Chemistry and Physics, 85(2-3), 340-346.
Liu, J. M., Xia, Y. B., Wang, L. J., Su, Q. F., & Shi, W. M. (2007). Effect of grain size on the electrical properties of ultraviolet photodetector with ZnO/diamond film structure. Journal of crystal Growth, 300(2), 353-357.
Liu, Y.-H., Young, S.-J., Ji, L.-W., & Chang, S.-J. (2015). UV enhanced field emission properties of Ga-doped ZnO nanosheets. IEEE transactions on electron devices, 62(6), 2033-2037.
Liu, Y., Young, S.-J., Hsiao, C., Ji, L.-W., Meen, T., Water, W., & Chang, S.-J. (2014). Visible-blind photodetectors with Mg-doped ZnO nanorods. IEEE Photonics Technology Letters, 26(7), 645-648.
Mujan, I., Anđelković, A. S., Munćan, V., Kljajić, M., & Ružić, D. (2019). Influence of indoor environmental quality on human health and productivity-A review. Journal of cleaner production, 217, 646-657.
Nutbeam, D., & Muscat, D. M. (1998). Health Promotion Glossary 2021. Health Promotion International.
Park, S.-H., & Ahn, D. (2005). Spontaneous and piezoelectric polarization effects in wurtzite ZnO∕ MgZnO quantum well lasers. Applied Physics Letters, 87(25), 253509.
Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A systematic study of sustainable development goal (SDG) interactions. Earth's Future, 5(11), 1169-1179.
Research, G. V. (2021). Next Generation Technologies Light Sensor Market Size & Share Report, 2020-2027.
Smith, B. J., Tang, K. C., & Nutbeam, D. (2006). WHO health promotion glossary: new terms. Health Promotion International, 21(4), 340-345.
Son, J. (2018). UV detectors: status and prospects. Paper presented at the UV and Higher Energy Photonics: From Materials to Applications 2018.
Song, Z., Wang, P., Guo, L., Yang, Y., & Tang, Q. (2015). Asymmetric semicircular and triangular electrode structures to increase photo-to-dark-current ratio in MgZnO metal semiconductor metal photodetectors. Japanese Journal of Applied Physics, 54(5), 052201.
Spemann, D., Kaidashev, E., Lorenz, M., Vogt, J., & Butz, T. (2004). Ion beam analysis of epitaxial (Mg, Cd) xZn1− xO and ZnO:(Li, Al, Ga, Sb) thin films grown on c-plane sapphire. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 219, 891-896.
Türkyılmaz, Ş. Ş., Güy, N., & Özacar, M. (2017). Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. Journal of Photochemistry and Photobiology A: Chemistry, 341, 39-50.
Vanheusden, K., Warren, W., Seager, C., Tallant, D., Voigt, J., & Gnade, B. (1996). Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of applied physics, 79(10), 7983-7990.
Vinodh, S., Kamala, V., & Jayakrishna, K. (2014). Integration of ECQFD, TRIZ, and AHP for innovative and sustainable product development. Applied Mathematical Modelling, 38(11-12), 2758-2770.
Wang, W., Ai, T., & Yu, Q. (2017). Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET–ITO flexible substrates by hydrothermal method. Scientific reports, 7, 42615.
Wang, X., Wu, Z., Webb, J., & Liu, Z. (2003a). Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition. Applied Physics A, 77(3-4), 561-565.
Wang, X., Wu, Z., Webb, J., & Liu, Z. (2003b). Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition. Applied Physics A, 77(3), 561-565.
Wire, B. (2020). Global-UV-Sensor-Market-2020-2024. Retrieved from https://www.businesswire.com/news/home/20201124005675/en/Global-UV-Sensor-Market-2020-2024-Production-Sales-Supply-Demand-Analysis-Forecast-to-2024-Technavio
Yang, C.-C., Su, Y.-K., Hsiao, C.-H., Young, S.-J., Kao, T.-H., Chuang, M.-Y., . . . Wu, S.-L. (2014). Novel Ga-ZnO nanosheet structures applied in ultraviolet photodetectors. IEEE Photonics Technology Letters, 26(13), 1317-1320.
Yao, C.-B., Zhang, K.-X., Wen, X., Li, J., Li, Q.-H., & Yang, S.-B. (2017). Morphologies, field-emission and ultrafast nonlinear optical behavior of pure and Ag-doped ZnO nanostructures. Journal of Alloys and Compounds, 698, 284-290.
Yogamalar, N. R., & Bose, A. C. (2011). Burstein–Moss shift and room temperature near-band-edge luminescence in lithium-doped zinc oxide. Applied Physics A, 103(1), 33-42.
Yoon, I. T., Cho, H. D., Lee, S., & Roshchupkin, D. V. (2018). Enhanced structural and luminescent properties of carbon-assisted ZnO nanorod arrays on (100) Si substrate. Journal of electronic materials, 47(8), 4404-4411.
Young, S.-J. (2014). Photoconductive gain and noise properties of ZnO nanorods Schottky barrier photodiodes. IEEE Journal of Selected Topics in Quantum Electronics, 20(6), 96-99.
Young, S.-J., & Lai, L.-T. (2018). Electron field emission enhancement based on Pt-adsorbed ZnO nanorods with UV irradiation. IEEE Transactions on Nanotechnology, 17(5), 1063-1068.
Young, S.-J., & Lai, L.-T. (2019). UV illumination and Au nanoparticles enhanced ZnO nanorods field electron emission device. IEEE transactions on electron devices, 67(1), 304-308.
Young, S.-J., Lai, L.-T., & Tang, W.-L. (2019). Improving the performance of pH sensors with one-dimensional ZnO nanostructures. IEEE Sensors Journal, 19(23), 10972-10976.
Young, S.-J., & Liu, Y.-H. (2015). Ultraviolet photodetectors with Ga-doped ZnO nanosheets structure. Microelectronic Engineering, 148, 14-16.
Young, S.-J., & Liu, Y.-H. (2016). Ultraviolet photodetectors with 2-D indium-doped ZnO nanostructures. IEEE transactions on electron devices, 63(8), 3160-3164.
Young, S.-J., & Liu, Y.-H. (2017). High response of ultraviolet photodetector based on al-doped ZnO nanosheet structures. IEEE Journal of Selected Topics in Quantum Electronics, 23(5), 1-5.
Young, S.-J., & Liu, Y.-H. (2018). Low-frequency noise properties of MgZnO nanorod ultraviolet photodetectors with and without UV illumination. Sensors and Actuators A: Physical, 269, 363-368.
Young, S.-J., & Tang, W.-L. (2019). Wireless zinc oxide based pH sensor system. Journal of The Electrochemical Society, 166(9), B3047.
Young, S.-J., & Wang, T.-H. (2018). ZnO nanorods adsorbed with photochemical Ag nanoparticles for IOT and field electron emission application. Journal of The Electrochemical Society, 165(8), B3043.
Young, S.-J., Yang, C.-C., & Lai, L.-T. (2016). growth of Al-, Ga-, and In-doped ZnO nanostructures via a low-temperature process and their application to field emission devices and ultraviolet photosensors. Journal of The Electrochemical Society, 164(5), B3013.
Young, S.-J., & Yuan, K.-W. (2019). ZnO nanorod humidity sensor and dye-sensitized solar cells as a self-powered device. IEEE transactions on electron devices, 66(9), 3978-3981.
Young, S., & Lai, L. (2015). Field emission properties of ZnO nanosheets grown on a Si substrate. Microelectronic Engineering, 148, 40-43.
Yu, M., Ma, Y., Liu, J., Li, X., Li, S., & Liu, S. (2016). Sub-coherent growth of ZnO nanorod arrays on three-dimensional graphene framework as one-bulk high-performance photocatalyst. Applied Surface Science, 390, 266-272.
Zhang, C., Huang, X., Liu, H., Chua, S. J., & Ross, C. A. (2016). Large-area zinc oxide nanorod arrays templated by nanoimprint lithography: control of morphologies and optical properties. Nanotechnology, 27(48), 485604.
Zhou, Y., Li, X., Yu, H.-Y., Hu, G.-L., & Yao, J.-M. (2016). Facile fabrication of controllable zinc oxide nanorod clusters on polyacrylonitrile nanofibers via repeatedly alternating immersion method. Journal of Nanoparticle Research, 18(12), 1-9.
Zhu, Q., Cai, F., Zhang, J., Zhao, K., Deng, A., & Li, J. (2016). Highly sensitive electrochemiluminescent immunosensor based on gold nanoparticles-functionalized zinc oxide nanorod and poly (amidoamine)-graphene for detecting brombuterol. Biosensors and Bioelectronics, 86, 899-906.
中文部分
文化部. (2019). 2019臺灣文化創意產業發展年報.
白世南, 許洲誠, & 吳世全. (2009). 溶膠-凝膠法製備應用於太陽能電池之 TiO2 薄膜研究. Paper presented at the 台灣真空學會 2009 年年度會議暨論文發表會.
白世南, & 鄭仲凱. (2011). 基板親水特性對製備氧化鋅奈米結構影響之研究. Paper presented at the 2011 第九屆微電子技術發展與應用研討會.
朱容萱. (2014). 健康促進醫院員工健康概念、健康行為與生活品質關聯性之研究-以某區域教學醫院為例. (碩士), 經國管理暨健康學院, 基隆市.吳仁彰. (2004). 奈米材料應用於氣體感測器之發展. 科儀新知.
吳文君. (2017). 多屬性層級效用模型評估住宅空間舒適度-以台灣自用住宅為例. (博士), 國立臺灣科技大學, 台北市.
吳明蒼. (2014). 健康促進生活型態量表編製之研究. 運動休閒管理學報, 11(4), 68-85.
李昌祐. (2008). 預期平均壽命、老年人口依賴率與經濟成長. (碩士), 國立成功大學, 台南市.
李思賢. (2013). 高科技產業工廠節能之方案評選:以M公司為研究案例. (碩士), 國立成功大學, 台南市.李清安. (2018). 火災風險評估之研究-以新北市泰山區為例. (博士), 國立臺北科技大學, 台北市.
杜瑞澤, & 徐傳瑛. (2008). 分析網路程序法 (ANP) 運用於綠色產品開發之設計決策研究. 高雄師大學報: 自然科學與科技類(24), 57-79.
周東鵬. (2012). 以層級結構分析法探討科技五金材料應用發展趨勢的關鍵決定因素:以面板製造業為例. (碩士), 國立成功大學, 台南市.
林琰騰. (2012). 氧化鋅及其鋁摻雜薄膜製備微結構與性質研究. (碩士), 國立成功大學, 台南市.
施奕全. (2010). 摻雜錳之氧化鋅薄膜磁性與光學特性研究. (碩士), 國立高雄大學, 高雄市.
唐銳哲. (2014). 組織健康文化與員工健康對工作滿意度及出缺勤之影響-半導體個案公司之研究. (碩士), 中國醫藥大學, 台中市.
孫翠萍. (2021). 健康飲食知識、工作壓力與健康促進之關聯性研究—以新竹地區中年人為例. (碩士), 元培醫事科技大學, 新竹市
張世熙. (2012). 利用雷射光鉗探討膠原蛋白黏彈度受紫外光照射的影響. (碩士), 國立清華大學, 新竹市.
張志麒. (2019). 論健康文化最低生存保障之法制-以台灣與日本比較分析為中心. (碩士), 國立中正大學, 嘉義縣.
張凱程. (2010). 利用環控箱中的UV-C燈進行微生物之滅菌試驗. (碩士), 明志科技大學, 新北市.
張敬法. (2014). 氧化鋅鎂系列紫外光光檢測器. (碩士), 崑山科技大學, 台南市.
張魁峯. (2008). Super decisions 軟體操作手冊: 以 ANP 突破 AHP 的研究限制: 鼎茂圖書.
許士軍. (2005). 「創意生活產業」的特色、解放與陷阱.
許文正. (2020). 健康自覺、健康生活型態與健康資訊涉入對癌症保險商品購買行為之影響研究. (碩士), 輔仁大學, 新北市.
許家展, & 蕭景鴻. (2018). 商用感測器發展現況及未來趨勢.
許桂樹. (2020). 健康產業創意與創新. 台灣: 新文京
郭煜騰. (2011). 以水熱法製備二氧化鈦奈米異質結構及其於紫外光感測之應用. (碩士), 吳鳳科技大學, 嘉義縣.
陳文傑. (2012). 綠色及顧客導向產品創新開發之研究. (碩士), 國立勤益科技大學, 台中市.
陳炫助. (2016). 感性工學之綠色創新設計模式. (博士), 國立雲林科技大學, 雲林縣.
陳家福. (2016). CFD_FLUENT模擬應用於不同設置位置之UVGI淨化設備對細菌淨化效果之差異性探討. (碩士), 明志科技大學, 新北市.
集邦科技. (2019). 殺菌應用需求熱絡紫外線LED市場穩定成長.
黃志堯. (2013). 電子產品購買指標之建立與分析-以平板電腦為例. (碩士), 亞東技術學院, 新北市.
楊柏宇. (2011). 低溫合成氧化鋅基奈米結構之元件特性與應用之研究. (博士), 國立交通大學, 新竹市.
鄒凱揚. (2018). 消費性電子產品購買行為之研究-以GoPro攝影機為例. (碩士), 國立臺灣科技大學, 台北市.
榮泰生. (2011). Expert Choice在分析層級程序法(AHP)之應用. Taiwan: 五南出版社.
蔡百傑. (2006). 探討以溶膠凝膠法製備氧化鋅透明導電薄膜. (碩士), 南台科技大學, 台南市.鄭子淩. (2012). 新產品開發之供應商評量研究_以背光模組為例. (碩士), 國立高雄應用科技大學, 高雄市.
蕭育仁, 林威志, 劉建惟, & 蕭文澤. (2019). 低耗能氣體感測器設計與製作方法. 科儀新知(218), 51-60.
蕭榮吉. (2015). 台灣矽晶太陽能產業競爭策略其技術創新發展因素之探討-應用模糊層級分析法. (碩士), 國立中央大學, 桃園縣.
薛丁仁, & 蕭文澤. (2019). 半導體式晶片型氣體感測器研發. 科儀新知(218), 42-50.
謝家祥. (2016). 應用 AHP 探討綠色行銷創新發展關鍵因素-以和泰汽車為例. 綠色經濟期刊, 2, a45-a65.
鍾秀玲. (2012). 健康促進醫院員工的健康生活型態與健康生活品質之關係. (碩士), 國立臺北護理健康大學, 台北市.
羅丞曜. (2001). 銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究. (碩士), 國立中央大學, 桃園縣.