簡易檢索 / 詳目顯示

研究生: 謝銘育
Hsieh, Ming-Yu
論文名稱: Eps8/Src路徑在巨噬細胞所調控的先天性免疫能力中所扮演的角色
The role of Eps8/Src axis in macrophage-mediated innate immunity
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 126
中文關鍵詞: SrcToll-like Receptors (TLR)iNOSEps8細胞激素巨噬細胞細胞移行
外文關鍵詞: cytokine, Macrophages, Src, Toll-like Receptors (TLR), iNOS, Eps8, migration
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先前的研究中我們已經證明在病原相關分子(PAMPs)活化巨噬細胞的路徑當中,iNOS/Src/FAK是一個通用的路徑。而且Eps8參與在TLR4所誘導的通用路徑當中,促進吞噬作用以及殺菌作用。在第一篇研究中我們發現在聚肌胞苷酸 (polyI:C)刺激巨噬細胞下TLR3 的Y759位置會有早期和晚期兩個階段的磷酸化。 除了短時間的第一階段TLR3 Y759位置的磷酸化,在雙股RNA的刺激後期,我們還發現了第二階段的TLR3 Y759位置的磷酸化,而且與Src的表現量還有IFN-β的產生有關。有趣的是,不論在in vitro或是in vivo實驗中皆發現Src可以磷酸化TLR3 的Y759位置。然而,Src的抑制會破壞晚期TLR3 Y759位置的磷酸化,而且降低IRF3和IRF7的入核量以及IFN-β的產生。重新表現Src則會回復所有因Src被抑制而改變的分子機制。值得注意是,在iNOS缺乏的巨噬細胞中我們也觀察到透過抑制Src的表現,polyI:C所誘導TLR3 的Y759位置磷酸化、IRF3和IRF7的入核以及IFN-β的產生都受到抑制。在巨噬細胞受到LPS的刺激下(LPS,一種TLR4的配體,已知會誘導Src與IFN-β的產生),抑制TLR3的表現會造成Src蛋白的不穩定,降低IRF3和IRF7在核中的表現量以及減少IFN-β的產生。異位表達原始的TLR3會回復Src的活性和ifn-β轉錄能力,但異位表達Y759位置磷酸突變的TLR3則無法回復Src的活性和ifn-β轉錄能力。總括來說,這些結果可以推測在巨噬細胞產生IFN-β的路徑中,iNOS/Src/TLR3 路徑軸是不可或缺的。在第二個研究中,我們觀察到Eps8的表達是受到PAMP誘導並且需要iNOS / Src。當Eps8減少同時會降低Src的活性,並且抑制巨噬細胞的移動能力。值得注意的是,在病原相關分子刺激Src受抑制的巨噬細胞中,異位表達Eps8可以回復部分Src的活性以及細胞移行能力。這些結果表明Eps8會調控TLR4誘導的訊息傳遞並且參與在TLRs刺激巨噬細胞由Src所調控的細胞移行能力中。在第三個研究中,我們發現降低Src的表現量會去抑制NO的產生和細胞激素的分泌;如果將Src 的表達量回復的話,NO的產生和激素的分泌則會有回復的現象。抑制Eps8也會降低LPS所誘導的iNOS的表現以及Src的活性。的確,Eps8會透過NF-κB訊息的活化來調控NO的產生以及TNF-α、IL-1β和IL-6的分泌。總括來說,我們的實驗證據指出Eps8和Src在LPS誘導NF-κB的活性中是不可或缺的,而且對於巨噬細胞所調控的先天免疫系統有很大的貢獻。

    We earlier demonstrated iNOS/Src/FAK axis as a general mechanism of macrophage motility in response to various pathogen-associated molecular patterns (PAMPs) and Eps8 took part in TLR4-mediated signal transduction, enhancing phagocytosis and bacterial killing effect. In the first study, we found that dsRNA stimulation induces biphasic TLR3 Tyr-759 phosphorylation in macrophages. In addition to the immediate TLR3 Tyr-759 phosphorylation, we identified a second wave of Tyr-759 phosphorylation accompanied by an increase of both Src and ifn-β transcription in the later phase of dsRNA stimulation. Interestingly, Src phosphorylated TLR3 Tyr-759 in vitro and in vivo. However, knockdown of Src abolished the late phase of TLR3 Tyr-759 phosphorylation and decreased the nuclear accumulation of interferon regulatory factors 3 and 7 (IRF3 and -7) and IFN-β production. Reintroduction of Src restored all of these molecular changes. Notably, via down-regulation of Src, dsRNA-elicited TLR3 Tyr-759 phosphorylation, the nuclear accumulation of IRF3/IRF7, and IFN-β generation were inhibited in inducible nitric-oxide synthase (iNOS)-null macrophages. TLR3 knockdown destabilized Src and reduced the nuclear level of IRF3/IRF7 and IFN-β production in macrophages exposed to LPS (a TLR4 ligand known to induce Src and IFN-β expression). Ectopic expression of wild type TLR3, but not its 759-phenylalanine mutant, restored Src activity and ifn-β transcription. Taken together, these results suggested an essential role of the iNOS/Src/ TLR3 axis in IFN-β production in macrophages. In the second study, we observed that expression of Eps8 was PAMP-inducible and iNOS/Src-dependent. Attenuation of Eps8 simultaneously impaired Src activity and suppressed macrophage mobility. Notably, ectopic Eps8 partly restored motility and Src activity in Src-attenuated macrophages exposed to PAMPs. These findings indicated Eps8 modulating TLR4-mediated signal transduction and taking part in Src-mediated cell migration in TLRs-stimulated macrophages. In the third study, we found that Src knockdown impaired LPS-induced NO production and cytokines secretion, which was reverted by ectopically expressed avian Src. Attenuation of Eps8 also reduced LPS-mediated iNOS expression and Src activation. Indeed, via activation of NF-κB signaling, Eps8 affected NO production and the secretion of TNF-α, IL-1β, and IL-6. Taken together, our data indicates that Eps8 and Src are necessary for LPS mediated NF-κB activation and contributes to macrophage-mediated innate immunity.

    Table of contents Abstract in Chinese ............. i Abstract in English ............. iii Acknowledgements .............. v List of Figure ............. viii Abbreviation .............. xii Chapter Ι. General introduction ........... 1 Immune system .............. 1 Macrophage ............. 1 Toll-like receptor ............. 2 Src ............... 3 Eps8 ................ 4 Specific aims ............. 5 Chapter ΙΙ. The inducible nitric-oxide synthase (iNOS)/Src axis mediates toll-like receptor 3 tyrosine 759 phosphorylation and enhances its signal transduction, leading to interferon-β synthesis in macrophages. (Publish in J. Biol. Chem. 2014, 289:9208-9220.) .............. 7 Abstract .............. 7 Introduction ............. 8 Materials and Experimental procedures ......... 11 vii Results .............. 16 Discussion ............... 24 Chapter ΙΙΙ. Eps8 protein participates in toll-like receptor-engaged macrophage migration. ............... 48 Abstract .............. 48 Introduction ............. 48 Materials and Experimental procedures ......... 51 Results .............. 56 Discussion ............... 60 Chapter IV. Eps8 protein facilitates cytokine secretion via NF-κB activation in LPS-stimulated macrophages. .......... 79 Abstract .............. 79 Introduction ............. 79 Materials and Experimental procedures ......... 82 Results .............. 86 Discussion ............... 91 Chapter V. General discussion ........... 110 Chapter VI. General conclusion ......... 112 References .............. 113 Appendix .............. 124 viii List of Figure Chapter II. FIGURE 1. Concomitant increase of Src, iNOS, TLR3 Pi-Y759, nuclear accumulation of IRF3 and IRF7, and ifn-β transcript in polyI:C-treated macrophages. ............... 29 FIGURE 2. Src interacts with TLR3 and phosphorylates TLR3 Y759. .. 31 FIGURE 3. NO activates Src to phosphorylate TLR3 Y759 and increase the level of ifn-β transcript. ............ 33 FIGURE 4. Src is important in polyI:C-induced IFN-β secretion in macrophages. 35 FIGURE 5. iNOS participates in Src induction and the IFN-β production in macrophages stimulated with polyI:C. ........ 36 FIGURE 6. Src is critical in NO-induced IFN-β secretion in macrophages. ... 38 FIGURE 7. iNOS/Src axis is required for polyI:C-mediated nuclear accumulation of IRF3 and IRF7 in macrophages. ......... 39 FIGURE 8. Src mediates TLR3 Y759 phosphorylation, nuclear accumulation of IRF3 and IRF7, and the expression of ifn-β in macrophages exposed to LPS. ... 42 FIGURE 9. TLR3 and its Y759-phosphorylation are important for polyI:C- and LPS-induced IFN-β production in macrophages. ........ 43 FIGURE 10. NO-mediated induction of Src, TLR3 Pi-Y759, and IFN-β is TRIF-independent in peritoneal macrophages and bone marrow derived macrophages. ............... 45 FIGURE 11. TLR3 participates in v-Src-mediated cell transformation. ... 47 ix Chapter III. Figure 12. Concomitant reduction of LPS-mediated mobility and Eps8 induction in C3H/HeJ macrophages. ........... 63 Figure 13. Reduced Src activation and cell migration in Eps8-attenuated macrophages exposed to LPS. ........... 65 Figure 14. Eps8 knockdown decreases PGN-, polyI:C-, and CpG-induced macrophage migration. ............ 67 Figure 15. Eps8 induction is iNOS-dependent in macrophages stimulated with diverse TLR agonists. ............ 69 Figure 16. Ectopic Eps8 rescues the suppressed migration in Src-attenuated macrophages stimulated with various TLR agonists. ...... 71 Figure 17. Eps8 participates in TLR-activated filopodia and lamellipodia formation in macrophages. ............. 74 Figure 18. C-terminal Proline 623/626 is important for Eps8 to associate with Src.76 Figure 19. Proline 623/626 alanine mutation in Eps8 decreases LPS, PGN-, polyI:C-, and CpG-induced macrophage migration. ........ 78 Chapter IV. Figure 20. The induction of iNOS, COX2 and Src occurs before the enhancement of x Eps8 in LPS-exposed macrophages. ......... 93 Figure 21. Attenuation of Src decreases NO production and cytokines secretion in LPS-mediated macrophage. .......... 95 Figure 22. Eps8 attenuation decreases LPS-mediated NO production and cytokines secretion in macrophage. ........... 98 Figure 23. PH-truncated 261-p97Eps8 reduces LPS-induced NO production and cytokines secretion in macrophage. .......... 100 Figure 24. Eps8 restores LPS-induced NO production and cytokines secretion in Src-attenuated RAW cell. .......... 102 Figure 25. Eps8 promotes LPS-induced NF-κB activition in RAW cells. ... 104 Figure 26. Eps8 and Src promote NF-κB nuclear localization and DNA binding activity in LPS-engaged macrophage. ......... 105 Figure 27. Viral-mediated Eps8 shRNA reduces cytokines secretion in LPS-induced sepsis model. ............. 107 Figure 28. A model of Eps8/Src axis in macrophage-mediated innate immunity. 109 Appendix. Figure 29. Overview of TLR signalling pathways. (from NATURE REVIEWS IMMUNOLOGY (2014), vol 14, p546, Figure 1) (118) ...... 124 Figure 30. Signal transduction pathways of diverse TLR-mediated macrophage migration. (from Biochimica et Biophysica Acta (2011), vol 1813, p136, Figure 12) xi (22). ............... 125 Figure 31. Eps8 promotes LPS-elicited activation of MAPKs in RAW264.7 cells. (from THE JOURNAL OF BIOLOGICAL CHEMISTRY (2012), vol 287, p18806, Figure 8) (17). ............. 126

    References
    1. King, K. Y., and Goodell, M. A. (2011) Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 11, 685-692
    2. Shizuru, J. A., Negrin, R. S., and Weissman, I. L. (2005) Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 56, 509-538
    3. Doulatov, S., Notta, F., Eppert, K., Nguyen, L. T., Ohashi, P. S., and Dick, J. E. (2010) Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol 11, 585-593
    4. Allman, D., and Pillai, S. (2008) Peripheral B cell subsets. Curr Opin Immunol 20, 149-157
    5. Palucka, K., Banchereau, J., and Mellman, I. (2010) Designing vaccines based on biology of human dendritic cell subsets. Immunity 33, 464-478
    6. Gordon, S., and Taylor, P. R. (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5, 953-964
    7. Geissmann, F., Gordon, S., Hume, D. A., Mowat, A. M., and Randolph, G. J. (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10, 453-460
    8. Wynn, T. A., and Barron, L. (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30, 245-257
    9. Murray, P. J., and Wynn, T. A. (2011) Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 89, 557-563
    10. Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., and Ley, K. (2010) Development of monocytes, macrophages, and dendritic cells. Science (New York, N.Y 327, 656-661
    11. Mosser, D. M., and Edwards, J. P. (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8, 958-969
    12. Martinon, F., Burns, K., and Tschopp, J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10, 417-426
    13. Kawai, T., and Akira, S. (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21, 317-337
    14. Thomas, S. M., and Brugge, J. S. (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13, 513-609
    15. Chun, J., and Prince, A. (2009) Ca2+ signaling in airway epithelial cells facilitates leukocyte recruitment and transepithelial migration. J Leukoc Biol 86, 1135-1144
    16. Yamashita, M., Chattopadhyay, S., Fensterl, V., Zhang, Y., and Sen, G. C. (2012) A TRIF-independent branch of TLR3 signaling. J Immunol 188, 2825-2833
    17. Chen, Y. J., Hsieh, M. Y., Chang, M. Y., Chen, H. C., Jan, M. S., Maa, M. C., and Leu, T. H. (2012) Eps8 protein facilitates phagocytosis by increasing TLR4-MyD88 protein interaction in lipopolysaccharide-stimulated macrophages. J Biol Chem 287, 18806-18819
    18. Leu, T. H., Charoenfuprasert, S., Yen, C. K., Fan, C. W., and Maa, M. C. (2006) Lipopolysaccharide-induced c-Src expression plays a role in nitric oxide and TNFalpha secretion in macrophages. Mol Immunol 43, 308-316
    19. Adamo, R., Sokol, S., Soong, G., Gomez, M. I., and Prince, A. (2004) Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am J Respir Cell Mol Biol 30, 627-634
    20. Nguyen, T. T., Johnsen, I. B., Knetter, C. F., Drablos, F., Fitzgerald, K. A., Lien, E., and Anthonsen, M. W. (2010) Differential gene expression downstream of Toll-like receptors (TLRs): role of c-Src and activating transcription factor 3 (ATF3). J Biol Chem 285, 17011-17019
    21. Tang, C. H., Hsu, C. J., Yang, W. H., and Fong, Y. C. (2010) Lipoteichoic acid enhances IL-6 production in human synovial fibroblasts via TLR2 receptor, PKCdelta and c-Src dependent pathways. Biochem Pharmacol 79, 1648-1657
    22. Maa, M. C., Chang, M. Y., Li, J., Li, Y. Y., Hsieh, M. Y., Yang, C. J., Chen, Y. J., Li, Y., Chen, H. C., Cheng, W. E., Hsieh, C. Y., Cheng, C. W., and Leu, T. H. (2011) The iNOS/Src/FAK axis is critical in Toll-like receptor-mediated cell motility in macrophages. Biochim Biophys Acta 1813, 136-147
    23. Maa, M. C., Hsieh, C. Y., and Leu, T. H. (2001) Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20, 106-112
    24. Di Fiore, P. P., and Scita, G. (2002) Eps8 in the midst of GTPases. Int J Biochem Cell Biol 34, 1178-1183
    25. Funato, Y., Terabayashi, T., Suenaga, N., Seiki, M., Takenawa, T., and Miki, H. (2004) IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res 64, 5237-5244
    26. Maa, M. C., Lai, J. R., Lin, R. W., and Leu, T. H. (1999) Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta 1450, 341-351
    27. Leu, T. H., Yeh, H. H., Huang, C. C., Chuang, Y. C., Su, S. L., and Maa, M. C. (2004) Participation of p97Eps8 in Src-mediated transformation. J Biol Chem 279, 9875-9881
    28. Maa, M. C., Lee, J. C., Chen, Y. J., Lee, Y. C., Wang, S. T., Huang, C. C., Chow, N. H., and Leu, T. H. (2007) Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem 282, 19399-19409
    29. Liu, P. S., Jong, T. H., Maa, M. C., and Leu, T. H. (2010) The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene 29, 3977-3989
    30. Byeon, S. E., Yi, Y. S., Oh, J., Yoo, B. C., Hong, S., and Cho, J. Y. (2012) The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012, 512926
    31. Kawai, T., and Akira, S. (2006) Innate immune recognition of viral infection. Nat Immunol 7, 131-137
    32. Akira, S., Uematsu, S., and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783-801
    33. Kaisho, T., and Akira, S. (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117, 979-987; quiz 988
    34. Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820
    35. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738
    36. Hiscott, J. (2007) Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 282, 15325-15329
    37. Solis, M., Goubau, D., Romieu-Mourez, R., Genin, P., Civas, A., and Hiscott, J. (2006) Distinct functions of IRF-3 and IRF-7 in IFN-alpha gene regulation and control of anti-tumor activity in primary macrophages. Biochem Pharmacol 72, 1469-1476
    38. Samuel, C. E. (2001) Antiviral actions of interferons. Clin Microbiol Rev 14, 778-809, table of contents
    39. Farrar, J. D., and Murphy, K. M. (2000) Type I interferons and T helper development. Immunol Today 21, 484-489
    40. De Maeyer, E., and De Maeyer-Guignard, J. (1998) Type I interferons. Int Rev Immunol 17, 53-73
    41. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K. J., Yamaguchi, O., Otsu, K., Tsujimura, T., Koh, C. S., Reis e Sousa, C., Matsuura, Y., Fujita, T., and Akira, S. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105
    42. Marie, I., Durbin, J. E., and Levy, D. E. (1998) Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 17, 6660-6669
    43. Au, W. C., Moore, P. A., LaFleur, D. W., Tombal, B., and Pitha, P. M. (1998) Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes. J Biol Chem 273, 29210-29217
    44. Sarkar, S. N., Peters, K. L., Elco, C. P., Sakamoto, S., Pal, S., and Sen, G. C. (2004) Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat Struct Mol Biol 11, 1060-1067
    45. Sato, M., Suemori, H., Hata, N., Asagiri, M., Ogasawara, K., Nakao, K., Nakaya, T., Katsuki, M., Noguchi, S., Tanaka, N., and Taniguchi, T. (2000) Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13, 539-548
    46. Daly, C., and Reich, N. C. (1993) Double-stranded RNA activates novel factors that bind to the interferon-stimulated response element. Mol Cell Biol 13, 3756-3764
    47. Sarkar, S. N., Smith, H. L., Rowe, T. M., and Sen, G. C. (2003) Double-stranded RNA signaling by Toll-like receptor 3 requires specific tyrosine residues in its cytoplasmic domain. J Biol Chem 278, 4393-4396
    48. Sarkar, S. N., Elco, C. P., Peters, K. L., Chattopadhyay, S., and Sen, G. C. (2007) Two tyrosine residues of Toll-like receptor 3 trigger different steps of NF-kappa B activation. J Biol Chem 282, 3423-3427
    49. Ishizawar, R., and Parsons, S. J. (2004) c-Src and cooperating partners in human cancer. Cancer Cell 6, 209-214
    50. Johnsen, I. B., Nguyen, T. T., Ringdal, M., Tryggestad, A. M., Bakke, O., Lien, E., Espevik, T., and Anthonsen, M. W. (2006) Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling. EMBO J 25, 3335-3346
    51. Maa, M. C., Chang, M. Y., Chen, Y. J., Lin, C. H., Yu, C. J., Yang, Y. L., Li, J., Chen, P. R., Tang, C. H., Lei, H. Y., and Leu, T. H. (2008) Requirement of inducible nitric-oxide synthase in lipopolysaccharide-mediated Src induction and macrophage migration. J Biol Chem 283, 31408-31416
    52. Lee, K. G., Xu, S., Kang, Z. H., Huo, J., Huang, M., Liu, D., Takeuchi, O., Akira, S., and Lam, K. P. (2012) Bruton's tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci U S A 109, 5791-5796
    53. Yamashita, M., Chattopadhyay, S., Fensterl, V., Saikia, P., Wetzel, J. L., and Sen, G. C. (2012) Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Sci Signal 5, ra50
    54. Laubach, V. E., Shesely, E. G., Smithies, O., and Sherman, P. A. (1995) Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci U S A 92, 10688-10692
    55. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science (New York, N.Y 301, 640-643
    56. Akhand, A. A., Pu, M., Senga, T., Kato, M., Suzuki, H., Miyata, T., Hamaguchi, M., and Nakashima, I. (1999) Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. J Biol Chem 274, 25821-25826
    57. Krumenacker, J. S., Hanafy, K. A., and Murad, F. (2004) Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res Bull 62, 505-515
    58. Uematsu, S., and Akira, S. (2007) Toll-like receptors and Type I interferons. J Biol Chem 282, 15319-15323
    59. Lin, R., Genin, P., Mamane, Y., and Hiscott, J. (2000) Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol 20, 6342-6353
    60. Akira, S., and Takeda, K. (2004) Toll-like receptor signalling. Nat Rev Immunol 4, 499-511
    61. Feng, J., Witthuhn, B. A., Matsuda, T., Kohlhuber, F., Kerr, I. M., and Ihle, J. N. (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17, 2497-2501
    62. Yu, C. L., Meyer, D. J., Campbell, G. S., Larner, A. C., Carter-Su, C., Schwartz, J., and Jove, R. (1995) Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science (New York, N.Y 269, 81-83
    63. Cao, X., Tay, A., Guy, G. R., and Tan, Y. H. (1996) Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell Biol 16, 1595-1603
    64. Zong, C., Yan, R., August, A., Darnell, J. E., Jr., and Hanafusa, H. (1996) Unique signal transduction of Eyk: constitutive stimulation of the JAK-STAT pathway by an oncogenic receptor-type tyrosine kinase. EMBO J 15, 4515-4525
    65. Campbell, G. S., Yu, C. L., Jove, R., and Carter-Su, C. (1997) Constitutive activation of JAK1 in Src-transformed cells. J Biol Chem 272, 2591-2594
    66. Murakami, Y., Nakano, S., Niho, Y., Hamasaki, N., and Izuhara, K. (1998) Constitutive activation of Jak-2 and Tyk-2 in a v-Src-transformed human gallbladder adenocarcinoma cell line. J Cell Physiol 175, 220-228
    67. Meng, F., and Lowell, C. A. (1997) Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med 185, 1661-1670
    68. Maa, M.-C., and Leu, T.-H. (2011) Activation of Toll-like receptors induces macrophage migration via the iNOS/Src/FAK pathway. BioMedicine 1, 11-15
    69. Gao, J. J., Filla, M. B., Fultz, M. J., Vogel, S. N., Russell, S. W., and Murphy, W. J. (1998) Autocrine/paracrine IFN-alphabeta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J Immunol 161, 4803-4810
    70. Bogdan, C. (2001) Nitric oxide and the immune response. Nat Immunol 2, 907-916
    71. Levy, D. E., and Darnell, J. E., Jr. (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3, 651-662
    72. Farlik, M., Reutterer, B., Schindler, C., Greten, F., Vogl, C., Muller, M., and Decker, T. (2010) Nonconventional initiation complex assembly by STAT and NF-kappaB transcription factors regulates nitric oxide synthase expression. Immunity 33, 25-34
    73. Levy, D. E. (2010) NF-kappaB-ISGF3 transcription factor cooperation: coincidence detector or memory chip? Immunity 33, 1-2
    74. Darnell, J. E., Jr. (1997) STATs and gene regulation. Science (New York, N.Y 277, 1630-1635
    75. Schindler, C., Levy, D. E., and Decker, T. (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282, 20059-20063
    76. Sakaguchi, S., Negishi, H., Asagiri, M., Nakajima, C., Mizutani, T., Takaoka, A., Honda, K., and Taniguchi, T. (2003) Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock. Biochem Biophys Res Commun 306, 860-866
    77. Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N., and Taniguchi, T. (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772-777
    78. Yang, M., Wang, C., Zhu, X., Tang, S., Shi, L., Cao, X., and Chen, T. (2011) E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKC{zeta}. J Exp Med 208, 2099-2112
    79. Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, P. F., Sato, S., Hoshino, K., and Akira, S. (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167, 5887-5894
    80. Toshchakov, V., Jones, B. W., Perera, P. Y., Thomas, K., Cody, M. J., Zhang, S., Williams, B. R., Major, J., Hamilton, T. A., Fenton, M. J., and Vogel, S. N. (2002) TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 3, 392-398
    81. Fujishima, H., Nakano, S., Tatsumoto, T., Masumoto, N., and Niho, Y. (1998) Interferon-alpha and -gamma inhibit the growth and neoplastic potential of v-src-transformed human epithelial cells by reducing Src tyrosine kinase activity. Int J Cancer 76, 423-429
    82. Takeda, K., Kaisho, T., and Akira, S. (2003) Toll-like receptors. Annu Rev Immunol 21, 335-376
    83. Monie, T. P., Bryant, C. E., and Gay, N. J. (2009) Activating immunity: lessons from the TLRs and NLRs. Trends Biochem Sci 34, 553-561
    84. Kawai, T., and Akira, S. (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650
    85. Pollard, T. D., and Borisy, G. G. (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465
    86. Pantaloni, D., Le Clainche, C., and Carlier, M. F. (2001) Mechanism of actin-based motility. Science (New York, N.Y 292, 1502-1506
    87. Disanza, A., Carlier, M. F., Stradal, T. E., Didry, D., Frittoli, E., Confalonieri, S., Croce, A., Wehland, J., Di Fiore, P. P., and Scita, G. (2004) Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 6, 1180-1188
    88. Higgs, H. N. (2004) There goes the neighbourhood: Eps8 joins the barbed-end crowd. Nat Cell Biol 6, 1147-1149
    89. Kunda, P., Craig, G., Dominguez, V., and Baum, B. (2003) Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Current biology 13, 1867-1875
    90. Steffen, A., Rottner, K., Ehinger, J., Innocenti, M., Scita, G., Wehland, J., and Stradal, T. E. (2004) Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J 23, 749-759
    91. Innocenti, M., Zucconi, A., Disanza, A., Frittoli, E., Areces, L. B., Steffen, A., Stradal, T. E., Di Fiore, P. P., Carlier, M. F., and Scita, G. (2004) Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nat Cell Biol 6, 319-327
    92. Maa, M. C., and Leu, T. H. (1998) Vanadate-dependent FAK activation is accomplished by the sustained FAK Tyr-576/577 phosphorylation. Biochem Biophys Res Commun 251, 344-349
    93. Chandra, B. R., Gowthaman, R., Akhouri, R. R., Gupta, D., and Sharma, A. (2004) Distribution of proline‐rich (PxxP) motifs in distinct proteomes: functional and therapeutic implications for malaria and tuberculosis. Protein Engineering Design and Selection 17, 175-182
    94. Ridley, A. J. (2001) Rho GTPases and cell migration. J Cell Sci 114, 2713-2722
    95. Kaverina, I., Krylyshkina, O., and Small, J. V. (2002) Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 34, 746-761
    96. Meng, F., and Lowell, C. A. (1998) A beta 1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration. EMBO J 17, 4391-4403
    97. Scita, G., Tenca, P., Areces, L. B., Tocchetti, A., Frittoli, E., Giardina, G., Ponzanelli, I., Sini, P., Innocenti, M., and Di Fiore, P. P. (2001) An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J Cell Biol 154, 1031-1044
    98. Frittoli, E., Matteoli, G., Palamidessi, A., Mazzini, E., Maddaluno, L., Disanza, A., Yang, C., Svitkina, T., Rescigno, M., and Scita, G. (2011) The signaling adaptor Eps8 is an essential actin capping protein for dendritic cell migration. Immunity 35, 388-399
    99. Avizienyte, E., and Frame, M. C. (2005) Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 17, 542-547
    100. Tilghman, R. W., Slack-Davis, J. K., Sergina, N., Martin, K. H., Iwanicki, M., Hershey, E. D., Beggs, H. E., Reichardt, L. F., and Parsons, J. T. (2005) Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J Cell Sci 118, 2613-2623
    101. Lee, H. H., Tien, S. C., Jou, T. S., Chang, Y. C., Jhong, J. G., and Chang, Z. F. (2010) Src-dependent phosphorylation of ROCK participates in regulation of focal adhesion dynamics. Journal of cell science 123, 3368-3377
    102. Alexandropoulos, K., and Baltimore, D. (1996) Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev 10, 1341-1355
    103. Baisden, J. M., Gatesman, A. S., Cherezova, L., Jiang, B.-H., and Flynn, D. C. (2001) The intrinsic ability of AFAP-110 to alter actin filament integrity is linked with its ability to also activate cellular tyrosine kinases. Oncogene 20, 6607-6616
    104. Liu, J., Liao, Z., Camden, J., Griffin, K. D., Garrad, R. C., Santiago-Pérez, L. I., González, F. A., Seye, C. I., Weisman, G. A., and Erb, L. (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279, 8212-8218
    105. Cheng, W. E., Ying Chang, M., Wei, J. Y., Chen, Y. J., Maa, M. C., and Leu, T. H. (2015) Berberine reduces Toll-like receptor-mediated macrophage migration by suppression of Src enhancement. Eur J Pharmacol 757, 1-10
    106. Schulte, W., Bernhagen, J., and Bucala, R. (2013) Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm 2013, 165974
    107. Aziz, M., Jacob, A., Yang, W. L., Matsuda, A., and Wang, P. (2013) Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol 93, 329-342
    108. Fink, M. P., and Warren, H. S. (2014) Strategies to improve drug development for sepsis. Nat Rev Drug Discov 13, 741-758
    109. Pasparakis, M. (2009) Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol 9, 778-788
    110. Kim, J. Y., Lee, Y. G., Kim, M. Y., Byeon, S. E., Rhee, M. H., Park, J., Katz, D. R., Chain, B. M., and Cho, J. Y. (2010) Src-mediated regulation of inflammatory responses by actin polymerization. Biochem Pharmacol 79, 431-443
    111. Hertzog, M., Milanesi, F., Hazelwood, L., Disanza, A., Liu, H., Perlade, E., Malabarba, M. G., Pasqualato, S., Maiolica, A., Confalonieri, S., Le Clainche, C., Offenhauser, N., Block, J., Rottner, K., Di Fiore, P. P., Carlier, M. F., Volkmann, N., Hanein, D., and Scita, G. (2010) Molecular basis for the dual function of Eps8 on actin dynamics: bundling and capping. PLoS Biol 8, e1000387
    112. Smolinska, M. J., Horwood, N. J., Page, T. H., Smallie, T., and Foxwell, B. M. (2008) Chemical inhibition of Src family kinases affects major LPS-activated pathways in primary human macrophages. Mol Immunol 45, 990-1000
    113. Huang, W. C., Chen, J. J., and Chen, C. C. (2003) c-Src-dependent tyrosine phosphorylation of IKKbeta is involved in tumor necrosis factor-alpha-induced intercellular adhesion molecule-1 expression. J Biol Chem 278, 9944-9952
    114. Chang, Y. J., Wu, M. S., Lin, J. T., Sheu, B. S., Muta, T., Inoue, H., and Chen, C. C. (2004) Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol Pharmacol 66, 1465-1477
    115. Castagnino, P., Biesova, Z., Wong, W. T., Fazioli, F., Gill, G. N., and Di Fiore, P. P. (1995) Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. Oncogene 10, 723-729
    116. Kribs-Zaleta, C. M. (2013) Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions. Math Biosci Eng 10, 1587-1607
    117. Tang, B., Zhou, W., Du, J., He, Y., and Li, Y. Identification of human leukemia antigen A* 0201‑restricted epitopes derived from epidermal growth factor pathway substrate number 8. Molecular Medicine Reports
    118. Gay, N. J., Symmons, M. F., Gangloff, M., and Bryant, C. E. (2014) Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14, 546-558

    下載圖示 校內:2023-02-01公開
    校外:2023-02-01公開
    QR CODE