| 研究生: |
陳政宏 Chen, Cheng-Hong |
|---|---|
| 論文名稱: |
有機太陽能電池主動層與鋁陰極之界面層研究 Characteristics of Interlayers between Active Layer and Aluminum Cathode in Organic Solar Cells |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 氧化鋁 、氟化鋰 、有機太陽能電池 、二氧化鈦 |
| 外文關鍵詞: | TiO2, LiF, organic solar cell, Al2O3 |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用P3HT:PCBM作為太陽能電池主動層,於主動層與陰極金屬Al之間添加一層具有不同能隙寬度之界面層(LiF, Al2O3, TiO2),以了解界面層對於太陽能電池光伏打參數的變化。實驗中在主動層旋轉塗佈完後,利用電子束蒸鍍機蒸鍍Al2O3或TiO2,或熱蒸鍍機蒸鍍LiF作為不同的界面層,再以熱蒸鍍機蒸鍍Al作為太陽能電池陰極金屬,探討P3HT:PCBM系統太陽能電池在主動層與陰極金屬之間添加界面層與否,以及界面層材料對於太陽能電池短路電流、開路電壓、填充因子以及光電轉換效率的影響。另外將添加不同界面層於PFDBC:PCBM系統太陽能電池主動層與陰極金屬之間,在蒸鍍完陰極金屬Al後,將太陽能電池經過熱退火程序,研究太陽能電池添加不同界面層的熱穩定性。
實驗中將利用X光光電子能量分析儀對不同界面層做成分以及化學鍵結的分析,並且釐清添加界面層是否會和高分子主動層或是陰極金屬Al產生化學反應;使用原子力顯微鏡針對所添加的界面層表面型態做分析,了解添加不同厚度的界面層對於表面粗糙度的變化;以及利用太陽能模擬器搭配雙極性電源電表量測太陽能電池的光伏打參數,包括:短路電流、開路電壓、填充因子以及光電轉換效率。
由實驗結果發現,添加三種界面層(LiF, Al2O3, TiO2)於P3HT:PCBM主動層與陰極金屬Al之間,均不會和主動層或是陰極金屬發生反應;而界面層表面粗糙度的變化極小,不足以影響太陽能電池的光電轉換效率;而光電轉換效率基本上與界面層能隙寬度呈現正相關,添加LiF在P3HT:PCBM系統太陽能電池可以得到最佳的光電轉換效率3.89%,判斷是因為LiF的價帶位置遠低於真空能階(Evac-Ev = 14.1eV),造成其阻擋電洞穿隧能力較佳,避免電子電洞對於Al陰極產生複合,故收集到的光電流較多(短路電流較大),進而增加太陽能電池的光電轉換效率。
在添加不同界面層對於太陽能電池的熱穩定性研究則發現,雖然添加LiF可以得到較佳的光電轉換效率,但是當太陽能電池經過10分鐘140℃的熱退火後,無論太陽能電池是否添加界面層,其光電轉換效率均下降,其中只有添加Al2O3的太陽能電池,光電轉換效率損失較少,代表添加Al2O3的太陽能電池熱穩定性較佳。
Materials of different energy band gaps (LiF, Al2O3, TiO2) are investigated as the interlayer between active layer and cathode in P3HT:PCBM organic solar cells. In this study, Al2O3 and TiO2 interlayers were evaporated by E-beam evaporator and LiF interlayers was evaporated by thermo evaporator. By measuring the open circuit voltage, short circuit current, fill factor and power conversion efficiency, we can establish the influence of interlayer on the performance of organic solar cells. In addition, LiF and Al2O3 interlayers are applied to the PFDBC:PCBM solar cell to study the effect of inserting interlayer on the thermo stability of organic solar cells.
The composition and chemical bonding state of the interlayers are analyzed by X-ray photoelectron spectroscopy (XPS). In addition, XPS may examine the possible chemical reaction between interlayer and active layer or cathode. Atomic force microscopy (AFM) is utilized to examine the morphology and roughness of different interlayers. Solar simulator and multi-channel I-V test unit (Keithley 2400) are employed for the measurement of open circuit voltage, short circuit current, fill factor and power conversion efficiency.
XPS data reveal that there is no chemical reaction between interlayer and active layer or cathode. AFM data clearly show that there is no directly relation between root-mean-square roughness and solar cell power conversion efficiency. The power conversion efficiency is generally in proportion to the width of band gap of the interlayer. With LiF interlayer, the power conversion efficiency of P3HT:PCBM solar cell up reaches 3.89% under AM1.5 100mW/cm2 sun light. Because of the wide band gap of LiF (Eg = 14eV), it has a very low valence band (Evac-Ev = 14.1eV). This makes LiF become a very good hole blocking layer. Since Al2O3 has a similar conduction band energy level as that of LiF but higher valence band energy level than that of LiF, organic solar cells with Al2O3 interlayer can achieve only 2.57% of power conversion efficiency.
In PFDBC:PCBM solar cells, the power conversion efficiency of all cells, with or without interlayers, decrease after post-cathode annealing. Despite that inserting LiF interlayer can achieve the highest power conversion efficiency , the power conversion efficiency drops drastically after post-cathode annealing. In contrast, the solar cell with Al2O3 interlayer has a very good thermal stability upon post-cathode thermal annealing.
行政院環境保護署http://eco2.epa.gov.tw/Blog/article_detail.aspx?ArticleId=431&type=&key=&ConditionType=2
沈輝、曾祖勤,太陽能光伏發電技術(化學工業,北京市)
經濟部能源局之中華民國台灣地區能源簡介無障礙網頁http://web2.moeaboe.gov.tw/ecw/About/energy%20situation/main/index.html
J. K. J. van Duren, X. Yang, J. Loos, C. W. T. B. Lieuwma, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance., Adv Funct. Mater, 5, 425(2004).
P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Slooff, W. J. H. Van Gennip, P. Jonkheijm, R. A. J. Janssen, Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction., Adv. Mater. 2, 118(2003).
Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells., Nature Materials, 5, 197(2006).
M. R. Reyes, K. Kim, D. L. Carroll, High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends., Appl. Phys. Lett., 87, 083506(2005).
F. Padinger, R. S. Rittberger, N. S. Sariciftci, Effects of postproduction treatment on plastic solar cells., Adv Funct. Mater, 1, 85(2003).
A. W. Hains, T. J. Marks, High-efficiency hole extraction/electron-blocking layer to replace poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) in bulk-heterojunction polymer solar cells., Appl. Phys. Lett., 92, 023504(2008).
Z. Nan, L. Qian, M. Jie, L. Z. Feng, Y. L. Ying, Y. S. Gen, C. Y. Sheng, Performance improvement of bulk heterojunction organic photovoltaic cell by addition of a hole transport material., Chin. Phys. Lett., 25, 1091(2008).
A. K. Pandey, P. E. Shaw, I. D. W. Samuel, J.M. Nunzi, Effect of metal cathode reflectance on the exciton-dissociation efficiency in heterojunction organic solar cells., Appl. Phys. Lett., 94, 103303(2009).
C. M. Ramsdale, A. C. Arias, J. D. MacKenzie, R.d H. Friend, N. C. Greenham, Open-circuit voltage characteristics in polyfluorene based photovoltaic devices., Mat. Res. Soc., 725, 7.8.1 (2002)
P. Vivo, J. Jukola, M. Ojala, V. Chukharev, H. Lemmetyinen, Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air., Sol. Energy Mater. Sol. Cells., 92, 1416(2008).
A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer., Appl. Phys. Lett., 90, 163517(2007).
Y. Li, Y. Hou, Y. Wang, L. Qin, Z. Feng, B. Feng, F. Teng, Enhanced efficiency of polymer:fullerene bulk-heterojunction solar cells with the insertion of thin CdS layer near the Al electrode., Synthetic Metals., 157, 956(2007).
J. Gilot, I. Barbu, M. M. Wienk, R. A. J. Janssen, The use of ZnO as optical spacer in polymer solar cells:Theoretical and experimental study., Appl. Phys. Lett., 91, 113520(2007).
J. K. Lee, N. E. Coates, S. Cho, N. S. Cho, D. Moses, G. C. Bazan, K. Lee, A. J. Heeger, Efficacy of TiOx optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol., Appl. Phys. Lett., 92, 243308(2008).
S. H. Lee, J. H. Kim, T. H. Shim, J. G. Park, Effect of Interface Thickness on Power Conversion Efficiency of Polymer Photovoltaic Cells., Electronic Mater. Lett., 5, 47(2009).
Y. Zhao, Z. Xie, Y. Qu, Y. Geng, L. Wang, Effects of thermal annealing on polymer photovoltaic cells with buffer layers and in situ formation of interfacial layer for enhancing power conversion efficiency., Synthetic Metals., 158, 908(2008)
Jenny Nelson, The physics of solar cells, (Imperial College Press, UK).
http://www.e-tonsolar.com/
National Renewable Energy Laboratory (NREL) http:// www.nrel.gov
J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency., Appl. Phys. Lett., 62, 2851(1993).
B. Oregan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films., Nature, 353, 737(1991).
J. Meyer, P. Gorrn, F. Bertram, S. Hamwi, T. Winkler, H. H. Johannes, T. Weimann, P. Hinze, T. Riedl, W. Kowalsky, Al2O3/ZrO2 Nanolaminates as ultrahigh gas-diffusion barriers—A strategy for reliable encapsulation of organic electronics., Adv Mater, 21, 1(2009).
H. Hoppe, N. S. Sariciftci, Organic solar cells: An overview., J. Meter. Res, 19, 7 (2004).
G. L. V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)., J. Appl. Phys., 98, 043704(2005).
P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Device physics of polymer:fullerene bulk heterojunction solar cells., Adv. Mater., 19, 1551(2007)
S. O. Kasap, Principles of electronic materials and devices, 3rd edition (McGraw-Hill, Boston).
C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Origin of the open circuit voltage of plastic solar cells., Adv Funct. Mater, 11 374(2001).
D. Cheyns, J. Poortmans, P. Hereman, Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells., Phys. Rev. B, 77, 165332(2008).
V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, Cathode dependence of polymer:fullerene bulk heterojunction solar cells., J. Appl. Phys., 94, 6849(2003).
F. Monestiera, J. J. Simona, P. Torchioa, L. Escoubasa, F. Florya, S. Baillyb, R. d. Bettigniesb, S. Guillerezb, C. Defranoux, Modeling the short-circuit current density of polymer solar cells based on P3HT : PCBM blend., Sol. Energy Mater. Sol. Cells., 91, 405(2006).
M. Y. Songa, K. J. Kima, D. Y. Kim, Enhancement of photovoltaic characteristics using a PEDOT interlayer in TiO2/MEHPPV heterojunction devices., Sol. Energy Mater. Sol. Cells., 85, 31(2005).
G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends., Nature Mater., 4, 864(2006).
Y. Terao, H. Sasabe, C. Adachi, Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells., Appl. Phys. Lett., 90, 103515(2007).
S. R. Forrest, The limits to organic photovoltaic cell efficiency., Mrs Bull., 30, 28(2005).
W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Efficiency hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer., Adv. Mater., 12, 1009(2004).
L. S. Hung, C. W. Tang, and M. G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode., Appl. Phys. Lett., 70, 152(1997).
J. Yoon, J. J. Kim, T. W. Lee, O. O. Park, Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/Al cathode., Appl. Phys. Lett., 76, 2152(2000).
M. Morsli, Y. Berredjem, A. Drici, B. Kouskoussa, A. Boulmokh, J. C. Bernde, Influence of Alq3 and/or Al2O3 layers at the C60/aluminum interface on the I–V characteristics of CuPc/C60-based solar cells., Phys. Stat. Sol., 5, 1226(2008).
C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, Effect of LiF/metal electrodes on the performance of plastic solar cells., Appl. Phys. Lett., 80, 1288(2002).
Mingqing Wang, Xiaogong Wang, P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative., Sol. Energy Mater. Sol. Cells., 91, 1782(2007).
E. Ahlswede, J. Hanisch, M. Powalla, Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells., Appl. Phys. Lett., 90, 163504(2007).
E. Lifshitz, Z. Chen, L. Bykov, Optical spectroscopy of 1T-SnS2 single crystal., J. Phys. Chem., 97, 238 (1993).
R. T. Poole, J. G. Jenkin, J. Liesegang, R. C. G. Leckey, Electronic band structure of the alkali halides. I. Experimental parameters., Phys. Rev. B, 11, 5179(1975).
A. S. Mysovski, A. D. Afanas’ev, S. N. Mysovski, Electronic and spatial structure of the hydroxyl ion in Lif, NaF, and KF crystals., Optics and spectroscopy., 88, 38(1998).
F. J. Himpsel, L. J. Terminello, D. A. Lapiano-Smith, E. A. Eklund, J. J. Barton, Band dispersion of localized valence states in LiF(100)., Phys. Rev. Lett., 68, 3611(1992).
I. D. Parker, H. H. Kim, Fabrication of polymer light-emitting diodes using doped silicon electrodes., Appl. Phys. Lett., 64, 1774(1994).
C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, Effect of LiF/metal electrodes on the performance of plastic solar cells., Appl. Phys. Lett., 80, 1288(2002).
R. T. Poole, J. G. Jenkin, J. Liesegang, R. C. G. Leckey, Electronic band structure of the alkali hlides. I. Experimental parameters., Phys. Rev. B, 11, 5179(1975).
T. J. Vink, A. R. Balkenende, R. G. F. A. Verbeek, H. A. M. van Hal, S. T. de Zwart, Materials with a high secondary-electron yield for use in plasma displays., Appl. Phys. Lett., 80, 2216(2002).
R. Singh; K. Rajkanan, D. E. Brodie, J. H. Morgan, Optimization of oxide-semiconductor/base-semiconductor solar cells., IEEE Transactions on electron devices, 27, 656(1980).
F. P. Koffyberg, F. A. Benko, P-type NiO as a photoelectrolysis cathode., J. Electrochem. Soc., 128, 2476(1981).
S. J. Roh, R. S. Mane, S. K. Min, W. J. Lee, C. D. Lokhande, S. H. Han, Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells., Appl. Phys. Lett., 89, 253512(2006).
V. Shrotriya, G. Li, Y. Yao, C. W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells., Appl. Phys. Lett., 88, 73508(2006).
Veeco 掃描式探針顯微鏡(Scanning Probe Microscope)測試報告
P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene)., Phys. Rev. B, 67, 064203(2003).
Y. Yao, J. Hou, Z. Xu, G. Li, Yang Yang, Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells., Adv Funct. Mater, 18, 1783(2008).
R. W. M. Kwok, XPSPEAK 4.0, Department of chemistry, The Chinese University of Hong Kong.
M. Repoux, Comparison of background removal methods for XPS, Surf. Interface Anal. 18, 567 (1992).
J. F. Moulder, W. F. Stiokle, P. E. Sohol, K. D. Bomben, Handbook of X-ray photoelectron spectroscopy., Physical Electronics, Inc.
D. Gupta, M. Bag, K. S. Narayan, Correlating reduced fill factor in polymer solar cells to contact effects., Appl. Phys. Lett., 92, 093301(2008).
V. Djara, J.C. Bernde, Effect of the interface morphology on the fill factor of plastic solar cells., Thin solid films, 493, 273(2005).
M. Glatthaar, M. Riede, N. Keegan, K. S. Hvid, B. Zimmermann, M. Niggemann, A. Hinsch, A. Gombert, Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy., Sol. Energy Mater. Sol. Cells., 91, 390(2007).
A. Beiser, Concepts of modern physics, 6th edition (Mcgraw-Hill companies, USA).
C. Yin, B. Pieper, B. Stiller, T. Kietzke, D. Nehera, Charge carrier generation and electron blocking at interlayers in polymer solar cells., Appl. Phys. Lett., 90, 133502(2007).
S. K. M. Jonsson, E. Carlegrim, F. Zhangi, W. R. Salaneck, M. Fahlman. Photoelectron spectroscopy of the contact between the cathode and the active layers in plastic solar cells: The Role of LiF., Jan. J. Appl. Phys., 44, 3695 (2005).
S. Yoo, B. Domercq, B. Kippelen, Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60., Appl. Phys. Lett., 97, 103706(2005).