| 研究生: |
張開駿 Chang, Kai-Chun |
|---|---|
| 論文名稱: |
汽油含氧量及芳香烴含量對四行程機車排放氣態污染物之影響 Effects of Oxygen and Aromatic Content in Gasoline on Gaseous Pollutant Emissions from Four-stroke Motorcycles |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 四行程化油器機車 、汽油含氧量及芳香烴含量 、揮發性有機污染物 、有機性有害空氣污染物 、臭氧生成潛勢 |
| 外文關鍵詞: | four-stroke motorcycle, oxygen and aromatics contents, air pollutants, organic air toxics, ozone-forming potential |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討四行程化油器機車使用不同比例含氧量與芳香烴含量汽油為燃料對引擎尾氣排放污染物影響。解析法定污染物、揮發性有機污染物、醛酮化合物及有機性有害空氣污染物(苯、甲苯、乙苯、二甲苯、甲醛及乙醛)之排放影響,並評析臭氧生成潛勢(OFP)、等效減量值(EEA)及有機性有害空氣污染物對健康影響。三支測試油分別為酒精含量15% (E15)汽油、芳香烴含量為15% (A15)汽油,及市售95無鉛汽油(對照油, RF);測試結果與對照油(RF)進行比較。試驗車輛選擇同廠牌同引擎形式之三部不同累計里程使用中機車,分別為低、中、高里程。
研究結果顯示,使用中機車使用E15為燃料與市售油相較,CO、THC排放係數皆減量,NOx排放係數則皆增量,唯高累計里程機車THC排放係數增量(2%)。使用中機車使用A15為燃料與市售油相較,CO、THC、NOx排放係數皆減量,唯高累計里程機車THC排放係數增量(8%),油品成份與法定污染物排放係數相關性分析顯示,CO排放係數與油品含氧量、烯烴含量具有高度負相關。
使用中機車使用E15為燃料與市售油相較,總 VOC排放係數皆減量,烷烴、烯烴及芳香烴排放係數為降低,但醛酮化合物於中、高累計里程機車增量約2倍,原因為醇類燃燒生成甲醛及乙醛所致。使用中機車使用A15為燃料與市售油相較, 總 VOC排放係數皆減量,烷烴、烯烴、芳香烴及醛酮化合物排放係數亦減量,唯高累計里程機車尾氣烯烴與醛酮化合物增量。油品成份與各VOC成分排放係數相關性分析顯示,醛酮化合物排放係數與油品含氧量、烯烴含量具有高度負相關。
有機性有害空氣污染物測試結果顯示,機車使用使用E15與A15為燃料對BTEX排放係數皆減量。使用E15則對甲醛和乙醛排放呈現增量,乙醛排放增加約9倍。相關性分析顯示,甲醛及乙醛排放係數與油品含氧量、烯烴含量具有高度負相關。
臭氧生成潛勢結果顯示,中、高累計里程機車使用E15為燃料之引擎廢氣排放約增加6~16%臭氧生成潛勢,原因為E15油品添加乙醇導致尾氣醛酮化合物排放增量致使臭氧生成潛勢上升;使用A15為燃料可改善臭氧生成潛勢約11~20%,原因為A15油品芳香烴含量、烯烴含量、含氧量皆較市售油低,可減少尾氣高光化反應性VOC排放。相關性分析顯示,臭氧生成潛勢與油品含氧量、烯烴含量具有高度負相關。
不同累計里程機車使用E15為燃料所致等效減量值(EEA)皆高於使用A15為燃料,顯示汽油添加乙醇對法定污染物具較佳改善效果;唯使用E15為燃料乙醛排放增量約3~9倍,造成致癌性權重與危害性權重高於使用A15為燃料。
整體而言,使用中機車使用E15為燃料對法定污染物改善效果較A15佳,但由於E15測試油添加醇類導致燃燒生成醛酮化合物,造成甲醛、乙醛及臭氧生成量增加,對人體健康危害產生影響。
This study has been conducted to investigate the effects of oxygen and aromatic content in gasoline on air pollutant emissions from four-stroke motorcycles. Two test fuels were used in this study. The first one was ethanol-gasoline blend which contains 15 vol% ethanol in gasoline (E15). The second test fuel was aromatic-lean gasoline which contained 15 vol% aromatics in fuel (A15). The results of all test fuels were compared to the commercial unleaded gasoline as reference fuel (RF), in which methyl tert-butyl ether (MTBE) was the oxygenated additive. The target pollutants included criteria air pollutants, volatile organic compounds (VOCs), carbonyls, and organic air toxics (benzene, toluene, ethylbenzene, xylene, formaldehyde, and acetaldehyde). Three test motorcycles with engine displacement of 125 cm3 and different accumulated millage were tested on a dynamometer with ECE test cycle.
The results showed that CO and THC emissions decreased and NOx emissions increased when used E15 as the fuel compared to those of RF in the in-use motorcycles. THC emission from high-mileage motorcycle increased 2%. When using A15 as fuel, CO, THC, NOx emissions decreased as compared to those of RF, but THC emission increased 8% for high-millage motorcycle. The results implied a strong negative relationship between CO emission and fuel oxygen and olefins contents.
Using E15 as the fuel reduced emissions of total VOCs, alkanes, alkenes, and aromatics groups. In contrast, the emissions of carbonyls group increasing about two folds as compared to the RF applied in the medium- and high-millage motorcycles. High emissions of acetaldehyde contributed high carbonyl group emission while using ethanol blend. The results showed that the total VOC emissions decreased as using A15 as fuel. The emissions of alkanes, alkenes, aromatics, and carbonyls groups decreased generally as compared to those from the RF, expect that high-mileage motorcycle showed a higher emission of alkenes and carbonyls. The correlation results implied a strong-negative relationship between the carbonyl emission and the fuel oxygen and olefins contents.
The results of air toxics emissions, showed that E15 and A15 reduced the emissions of benzene, toluene, ethylbenzene, xylene (BTEX) from all test motorcycles compared to those from RF. Using E15 as fuel increases emissions of formaldehyde and acetaldehyde. Acetaldehyde emission increased about 9 times than that from RF.
The ozone-forming potential (OFP) of VOCs in the engine exhaust showed that using E15 as fuel increased OFP about 6~16% for medium- and high-mileage motorcycles. Higher carbonyls emissions is the main reason that contributed high OFP while using ethanol blend. As using A15 OFP decreased 11~20%. Using ethanol-blended gasoline as fuel may reduce criteria pollutant emissions effectively than using A15 as fuel. On the other hand, using E15 as fuel may cause high carcinogenic and hazard impact because of higher acetaldehyde emissions.
In summary, the criteria pollutant emissions may decrease when use E15 or A15 as fuel as compared those from the RF; the E15 also showed a higher emission reduction than those from A15. However, using E15 had the higher OFP and toxicity because of the higher emission of formaldehyde and acetaldehyde.
AAMA/AIAM, 1997. Study on the effects of fuel sulfur on low emission vehicle criteria pollutants. AAMA.
Andrade M.F., Ynoue R.Y., Harley R., 2003. Ozone Modeling in an Ethanol-, Gasoline- and Diesel-Fuel Environment: the Metropolitan Area of São Paulo, Brazil. A&WMA’s 96th Annual Conference & Exhibition June 22-26.
AQIRP, 1997. Auto/Oil Air Quality Improvement Research Program: Program Final Report. Coordinating Research Council, Atlanta, GA.
Atkinson, R., Tuazon E.C., Aschmann S.M., 1995. Products of the gas-phase reactions of O3 with Alkenes. Environmental Science & Technology 29(7), 1860-1866.
Atkinson, R., 1989. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. Journal of Physical and Chemical 1, 1-246.
Atkinson, R., 1990. Gas-phase tropospheric chemistry organic compounds: a review. Atmospheric Environment 24(1), 1-41.
Carter, W.P.L., 1994. Development of ozone reactivity scales for volatile organic compounds. Journal of Air & Waste Management Association 44, 881-899.
Carter, W.P.L., Pierce, J.A., Luo, D., Malkina, I.K., 1995. Environment chanmber study of maximum incremental reactivities of volatile organic compounds. Atmospheric Environment 29, 2499-2511.
Chan, C.C., Nien, C.K., Tasi, C.Y., Her, G.R., 1995. Comparison of tail pipe emissions from motorcycle and passenger cars. Journal of Air & Waste Management Association 45(2), 116-124.
Chevron Products Company. 2003. Motor Gasolines Technical Review, San Ramon, USA. www.chevron.com/products/prodserv/fuels/.
Conservation of Clean Air and Water in Europe (CONCAWE), 1999. Fuel Quality, Vehicle Technology and Their Interactions. Report No. 99/55. CONCAWE, Brussels.
Conservation of Clean Air and Water in Europe (CONCAWE), 2001. Motor Vehicle Emission Regulations and Fuel Specifications – Part 1 Summary and annual 1999/2000 update. Report No. 1/01. CONCAWE, Brussels.
Derwent, R.G., 1996. Photochemical ozone creation potentials for a large number of reactive hydrocarbons under european conditions. Atmospheric Environment 30, 181-199.
European Commission (EC), 2003. European Parliament and Council Directive 2003/17/EC.
Goodfellow C.L., Gorese R.A., Hawkins M.J., McArragher J.S., 1996. European programme on emission, fuels and engine technologies – Gasoline aromatics/E100 study. SAE Technical Paper Series, 961072, Society of Automotive Engineers, Warrendale, PA.
Heeb, N.V., Forss, A.M., Weilenmann, M., 2002. Pre- and post-catalyst-, fuel-, velocity- and acceleration-dependent benzene emission data of gasoline-driven EURO-2 passenger cars and light duty vehicles. Atmospheric Environment 36, 4745-4756.
He, B.Q., Wang, J.X., Hao, J.M., Yan, X.G., Xiao, J.H., 2003. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric Environment 37, 949–957.
Hsieh, W.D., Chen R.H., Wu T.L., Lin T.H., 2002. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment 36, 403-410.
Hoekman, S.K., 1992. Speciated measurements and calculated reactivities of vehicle exhaust emissions from conventional and reformulated gasolines. Environmental Science & Technology 26, 1206-1216.
Hochhauser A.M., Koehl W.J., Painter L.J., Rippon B.H., Reuter R.M., Rutherford J.A., Benson J.D., Burns V.R., Gorse Jr. R.A., 1991. The effect of aromatics, MTBE, olefins, and T90 on mass exhaust emissions from current and older vehicles. SAE Paper No. 912322, Society of Automotive Engineers, Warrendale, PA.
Jia L.W., Shen M.Q., Wang J., Lin M.Q., 2005. Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials 123(1-3), 29-34.
Jia L.W., Zhou, W.L., Shen, M.Q., Wang, J., Lin, M.Q., 2006. The investigation of emission characteristics and carbon deposition over motorcycle monolith catalytic converter using different fuels. Atmospheric Environment 40, 2002-2010.
Knapp K.T., Stump F.D., Tejada S, B., 1998. The effect of ethanol fuel on the emissions of vehicles over a wide range of temperatures. Journal of Air & Waste Management Association 48, 646-653.
Koehl W.J., Painter L.J., Reuter R.M., Benson J.D., Burns V.R., Gorse R.A. Jr., Hochhauser A.M., 1991. Effects of gasoline sulfur level on mass exhaust emissions - Auto/oil air quality improvement research program. SAE Paper No. 912323, Society of Automotive Engineers, Warrendale, PA.
Leong S.T., Muttamara S., Laortanakul P., 2002. Applicability of gasoline containing ethanol as Thailand’s alternative fuel to curb toxic VOC pollutants from automobile emission. Atmospheric Environment 36, 3495-3503.
Lisa, G., 2005. Chemical characterization of emissions from advanced technology light-duty vehicles. Atmospheric Environment 39, 2385-2398.
MacKinven R., Hublin M., 1996. European programme on emissions, fuels and engine technologies – Objectives and design. SAE Technical Paper Series, 961065, Society of Automotive Engineers, Warrendale, PA.
M. Al-Hasan., 2003. Effec of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Journal of Energy Conversion and Management 44, 1547-1561.
Mobile Source Air Toxics Technical Report, Grand Parkway Segments E, F-1, F-2, and G, 2006. http://www.epa.gov/otaq/toxics.htm.
Perry, R., and Gee, I.L., 1995. Vehicle emissions in relation to fuel composition. Science of The Total Environment 169(1-3), 149-156.
Phase II Reformulated Gasoline: The Next Major Step Toward Cleaner Air, http://www.epa.gov/otaq/rfg/f99042.pdf.
Sweet C. W., Vermette S. J., 1992. Toxic Volatile Organic Compounds in Urban Air in Illinois. Environmental Science & Technology 26, 165-173.
Tsai J.H., Hsu Y.C., Weng H.C., Lin W.Y., Jeng F.T., 2000. Air pollutant emission factors from new and in-use motorcycles. Atmospheric Environment 34(28), 4747-4754.
Tsai J.H., Chiang H.L., Hsu Y.C., Weng H.C., Yang C.Y., 2003. The speciation of volatile organic compounds (VOCs) from motorcycle engine exhaust at different running modes. Atmospheric Environment 37(18), 2485-2496.
USEPA 網頁資料a, Mobile Source Air Toxics, http://www.epa.gov/otaq/toxics.htm.
USEPA 網頁資料b, Reformulated Gasoline - Regulations &Standards, http://www.epa.gov/otaq/rfg_regs.htm.
USEPA網頁資料c, Reformulated Gasoline , Basic Information http://www.epa.gov/otaq/rfg/information.htm
World-Wide Fuel Charter, December 2002,http://www.oica.net/htdocs/fuel%20quality/WWFC_Dec2002_Brochure.pdf
Zervas, E., Montagne, X., Lahaye, J., 2003. Emissions of Regulated Pollutants from a Spark Ignition Engine Influence of fuel and Air/Fuel Equivalence Ratio. Environmental Science & Technology 37(14), 3232-3238.
中文部分
王建鴻, 1999, 乙醇替代燃料對於汽油引擎排放廢氣中醛酮類化合物之研究, 國立成功大學環境工程學系碩士論文.
王怡靜, 2001, 含氧添加劑對車用無鉛汽油引擎排放多環芳香烴特徵之影響, 國立成功大學環境工程學系博士論文.
沈淑貞, 2002, 台灣地區車用油特性及其對空氣污染物排放影響之研究, 國立台灣大學環境工程研究所碩士論文.
邱雅琪, 2004, 以異辛烷為汽油添加劑對機車引擎揮發性有機物及醛酮化合物排放之影響, 國立成功大學環境醫學研究所碩士論文.
陳厚良, 2005, 替代性燃油-汽醇對機車引擎排放特性之研究, 屏東科技大學碩士論文.
張安伶, 2006, 油品成份對機車引擎排放氣態污染物影響研究, 國立成功大學環境工程學系碩士論文.
周欣慧, 2008, 酒精汽油對不同里程車輛引擎排放氣態污染物影響研究, 國立成功大學環境工程學系碩士論文.
姚永真, 2010, 汽油成分於四行程機車引擎氣態污染物排放特徵及模式研究, 國立成功大學環境工程學系博士論文.
行政院環境保護署, 1998, 南高屏地區空氣污染總量管制研究計畫(子計畫B1:移動源排放VOCs光化反應特徵之分析研究), EPA-87-FA-42-03-F5.
行政院環境保護署, 2004, 台灣地區汽車汙染現況調查及代表性行車型態相關性測試, EPA-92-FA13-03-A113.
行政院環境保護署, 2009, 移動污染源管制措施研擬、排放總量推估與縣市執行成效考評, EPA-98-FA13-03-A173.
行政院國家科學委員會補助專題研究計畫, 2006, 汽油成份對機車引擎廢氣成份影響研究, NSC 95-2221-E-006-172-MY3.
行政院國家科學委員會專題研究計畫, 2005, 機車使用觸媒轉化器劣化機制探討, NSC94-2211-E-002-020.
蕭瑞聖, 2005, 機車原理與機構(增訂本), ISBN 957-18-0114-3, 財團法人徐氏文教基金會.
孔廣宸, 林坤海, 2000, 不同類型汽油對車輛性能與排放污染之影響-以重組油與以裂解油為主要摻配原料之汽油特性比較. 石油季刊36(3), 43-50.
鄭宗正, 林瑞榕, 陳永勳, 林欣慧, 2005, 汽機車年平均行駛里程分析, 機械工業雜誌, 272(12).
行政院環保署網頁資料, http://www.epa.gov.tw/
行政院環保署移動污染源管制網, http://mobile.epa.gov.tw/index.aspx
交通部統計處, http://www.motc.gov.tw/mocwebGIP/wSite/mp?mp=1