| 研究生: |
曹哲豪 Tsao, Che-Hao |
|---|---|
| 論文名稱: |
探討多維循環機械拉伸對黃韌帶細胞之影響 Investigation on the effect of multi-dimensional cyclic mechanical stretch in ligamentum flavum cells |
| 指導教授: |
涂庭源
Tu, Ting-Yuan |
| 共同指導教授: |
林政立
Lin, Cheng-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 腰椎管狹窄症 、黃韌帶肥大 、機械應力 、體外3D細胞培養 、彈性蛋白 、膠原蛋白 、細胞排列 、細胞形態 |
| 外文關鍵詞: | Lumbar spinal stenosis, ligamentum flavum hypertrophy, mechanical stress, in vitro 3D cell culture, elastin, collagen, cell alignment, cell morphology |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腰椎管狹窄症(LSS)是老年人腰背痛的主要原因之一,黃韌帶肥厚(LFH)是LSS的主要病理機制。雖然關於黃韌帶( LF )的發病機制已有很多文獻,但LFH的確切病理機制仍然知之甚少。除了衰老外,機械應力刺激被認為是誘導LFH肥大的重要因素。
越來越多的研究集中在應用機械應力作為物理刺激來研究動態培養在不同類型細胞中的作用,例如心肌細胞的再生和血管壁細胞的修復。只有一項文獻表明,透過動態拉伸系統中的LF細胞培養可用於研究LFH的機制。在這些文獻中,大多數研究集中在傳統的二維(2D)培養上,此種培養條件對LF細胞的研究提供的信息很少,因此更加迫切地需要更多的生理相關培養環境。
在這裡,我們研究了機械應力對LF細胞的多維培養條件的影響,試圖部分地模擬LF細胞在人體內的運動。利用現有的商用動態培養系統及其二維(2D)平台,我們進一步開發了兩種類型的三維條件(2.5和3D),商用系統可以很容易地採用這種條件對LF細胞施加機械應力。發現在2D,2.5D和3D培養中對LF細胞的研究在72小時內呈現不同的細胞排列和細胞形態。
最後,我們成功地證明了LF細胞在我們的3D拉伸平台上與成纖維細胞具有高度的相似性,並且發現在傳統2D培養和3D培養中細胞排列和形態的差異,儘管使用3D拉伸平台仍存在一些不便。在未來,我們希望通過在更穩定的3D拉伸平台中培養LF細胞,我們將能夠進一步了解LFH的機制。
Lumbar spinal stenosis (LSS), is one of the most common causes of low back pain in the elderly, and ligamentum flavum hypertrophy (LFH) is the main pathomechanism of LSS. Although there have been many literatures on the pathogenesis of ligamentum flavum (LF), the exact pathological mechanism of LFH remains poorly understood. Besides aging, the mechanical stress stimulation is considered an important factor to induce the hypertrophy of LF.
More and more research focuses on applying mechanical stress to serve as a physical stimuli to study the effect of dynamic culture in different types of cells, such as regeneration of cardiomyocytes and repair of vascular wall cells. Only one study demonstrated that the LF cells culture on the dynamic stretching system could be utilized to study the mechanism of LFH. Among these literatures, most of studies focus on conventional two-dimensional (2D) culture, suggesting little information is provided on the study of LF cells and highlighting generation of more physiological relevant culture environment is desired.
Here, we investigated the effect of mechanical stress in multi-dimensional culture condition for LF cells, in attempt to partly mimic the motion of LF cells in human body. Taking advantage of the commercial dynamic culture system and its two-dimensional (2D) platform, we further developed two types of three-dimensional conditions (2.5 and 3D) that could be easily adopted by the commercial system to apply mechanical stress on LF cells. Investigation on the LF cells in 2D, 2.5D and 3D culture was found to present different cell alignment and cell morphology over the course of 72 h.
Finally, we successfully demonstrated that the LF cells have high degree of similarity to fibroblasts on our 3D stretching platform and found difference in cell alignment and morphology in conventional 2D culture and 3D culture, although there was some inconvenience of using the 3D stretching platform. In the future, we hope that we will be able to further understand the mechanism of LFH by cultivating the LF cells in a more stable 3D stretching platform.
1. Nakatani, T., et al., Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming growth factor-beta1. J Orthop Res, 2002. 20(6): p. 1380-6.
2. Wang, F., et al., Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage, 2016. 24(3): p. 398-408.
3. Lee, S.Y., et al., Lumbar Stenosis: A Recent Update by Review of Literature. Asian Spine J, 2015. 9(5): p. 818-28.
4. Yoshiiwa, T., et al., Analysis of the Relationship between Hypertrophy of the Ligamentum Flavum and Lumbar Segmental Motion with Aging Process. Asian Spine J, 2016. 10(3): p. 528-35.
5. Kaneko, D., et al., Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro. Connect Tissue Res, 2009. 50(4): p. 263-9.
6. Chen, J., et al., Cyclic stretch enhances apoptosis in human lumbar ligamentum fl avum cells via the induction of reactive oxygen species generation. J Spinal Cord Med, 2016. 39(4): p. 450-4.
7. Hayashi, K., et al., Mechanical stress induces elastic fibre disruption and cartilage matrix increase in ligamentum flavum. Sci Rep, 2017. 7(1): p. 13092.
8. Chen, K., et al., Role of boundary conditions in determining cell alignment in response to stretch. Proc Natl Acad Sci U S A, 2018. 115(5): p. 986-991.
9. Rosenfeld, D., et al., Morphogenesis of 3D vascular networks is regulated by tensile forces. Proc Natl Acad Sci U S A, 2016. 113(12): p. 3215-20.
10. Hsieh, H.Y., et al., Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab Chip, 2014. 14(3): p. 482-93.
11. Liu, L., et al., Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nat Mater, 2017. 16(12): p. 1252-1261.
12. Vining, K.H. and D.J. Mooney, Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol, 2017. 18(12): p. 728-742.
13. Zhang, B., et al., Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem Cell Res, 2015. 14(2): p. 155-64.
14. Kamble, H., et al., Cell stretching devices as research tools: engineering and biological considerations. Lab Chip, 2016. 16(17): p. 3193-203.
15. Kamble, H., et al., Pneumatically actuated cell-stretching array platform for engineering cell patterns in vitro. Lab Chip, 2018. 18(5): p. 765-774.
16. Kim, H.J., et al., Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip, 2012. 12(12): p. 2165-74.
17. Hsieh, J.L., et al., Estrogen and mechanical loading-related regulation of estrogen receptor-beta and apoptosis in tendinopathy. PLoS One, 2018. 13(10): p. e0204603.
18. Wong, T.Y., et al., Mechanical Stretching Simulates Cardiac Physiology and Pathology through Mechanosensor Piezo1. J Clin Med, 2018. 7(11).
19. Occhetta, P., et al., A three-dimensional in vitro dynamic micro-tissue model of cardiac scar formation. Integr Biol (Camb), 2018. 10(3): p. 174-183.
20. Morgan, A.J., et al., Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication. PLoS One, 2016. 11(4): p. e0152023.
21. Au, A.K., W. Lee, and A. Folch, Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip, 2014. 14(7): p. 1294-301.
22. Miller, J.S., et al., Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials, 2010. 31(13): p. 3736-43.
23. Nguyen, D.H., et al., Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A, 2013. 110(17): p. 6712-7.
24. Kuddannaya, S., et al., Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl Mater Interfaces, 2013. 5(19): p. 9777-84.
25. Wipff, P.J., et al., The covalent attachment of adhesion molecules to silicone membranes for cell stretching applications. Biomaterials, 2009. 30(9): p. 1781-9.
26. Schrader, P.K., et al., Histology of the ligamentum flavum in patients with degenerative lumbar spinal stenosis. Eur Spine J, 1999. 8(4): p. 323-8.
27. Dunphy, S.E., et al., Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs. J Mech Behav Biomed Mater, 2014. 38: p. 251-9.
28. Wang, S., et al., Effects of mechanical stretching on the morphology of extracellular polymers and the mRNA expression of collagens and small leucine-rich repeat proteoglycans in vaginal fibroblasts from women with pelvic organ prolapse. PLoS One, 2018. 13(4): p. e0193456.
29. Wang, S., et al., Effects of mechanical stretching on the morphology and cytoskeleton of vaginal fibroblasts from women with pelvic organ prolapse. Int J Mol Sci, 2015. 16(5): p. 9406-19.
30. Saito, T., et al., Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy. PLoS One, 2017. 12(1): p. e0169717.
31. Fiorica, C., et al., Hyaluronic acid and α-elastin based hydrogel for three dimensional culture of vascular endothelial cells. Vol. 46. 2018.