| 研究生: |
胡曉晴 Hu, Hsiao-Ching |
|---|---|
| 論文名稱: |
藉由矽烷微奈米表面形貌引導聚電解質選擇性沉積 Selective Deposition of Polyelectrolyte via Silane Nanotopography-Mediated Process |
| 指導教授: |
李介仁
Li, Jie-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 聚電解質 、逐層沉積技術 、自組裝 |
| 外文關鍵詞: | polyelectrolyte, layer-by-layer, self-assembly |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伴隨組織工程技術的發展,研究人員開始能夠在體外製作出與體內組織及器官相似的層狀結構。在製作分層結構的方法中,逐層沉積技術已成為一種最常見且簡單的方式,它是一種將大分子沉積在介面上的方法,除了沉積在平面基板上,也可以在結構化的基板上選擇性的製作出層狀複合膜。其實驗步驟是將基材反覆浸泡在帶相反電荷的聚電解質溶液中,使其主要透過靜電相互作用構建聚電解質多層膜。本研究先是利用一些簡單、快速的方法製作出具微奈米結構的基板,再使用聚丙烯酸(PAA)與聚乙烯亞胺(PEI)這兩種聚電解質以逐層沉積的方式選擇性地自組裝於表面結構,形成聚電解質多層膜,進一步研究其表面形貌對細胞外基質(ECM)蛋白質吸附行為的影響。實驗中所使用的ECM蛋白為第一型膠原蛋白,它是眾多細胞外間質中含量最豐富的蛋白質且已被應用於製作生物材料,例如水凝膠和聚電解質多層膜。
本研究證實了我們利用矽烷製作出了具微奈米結構的表面,並透過改變表面的幾何結構及官能基來模擬體內複雜的結構,此表面的結構能夠引導聚電解質的自組裝,結構化的聚電解質多層膜亦會再影響第一型膠原蛋白在此介面進行選擇性吸附。這個由聚電解質與第一型膠原蛋白所形成的仿生介面對於發展組織工程支架結構及促進細胞生長、分化皆具極大的潛力。
The ability to generate hierarchical tissue structures in vitro might one day allow researchers to recreate truly biomimetic tissues in a dish. Among the methods used to produce hierarchical structures, layer-by-layer (LBL) assembly is a simple method to deposit macromolecules on interfaces. Based on immersing the substrate in oppositely charged polyelectrolyte (PE) solutions, multilayered films can be built through electrostatic interactions. In this research, we developed the LBL polyelectrolyte multilayer (PEM) composed of polyacrylic acid (PAA) and polyethylenimine (PEI) assembly on silane nanotopographies to investigate the influence of topographical cues on extracellular matrix (ECM) protein adsorption behavior. The ECM protein used for experiments is type I collagen which is the most abundant ECM protein and has been utilized to produce biomaterial systems, such as hydrogels and PEM films mainly. Our results demonstrate that PE assembly can be controlled by using different silane nanotopographies, forming biomimetic interfaces with various geometries. The spatial organization of silane nanotopography not only guides self-assembly of PE but also affects the exposure of their binding sites to collagen. The nanotopographies combined with PAA and PEI layers exhibit superior control in collagen adsorption to form biomimetic interfaces, offering great potential to trigger cell growth or differentiation on surfaces of tissue engineering scaffolds.
1. Langer, R.; Vacanti, J. P. Tissue engineering. Science 1993, 260, 920-926.
2. Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, 1232-1237.
3. Hoogeveen, N. G.; Stuart, M. A. C.; Fleer, G. J.; Bohmer, M. R. Formation and stability of multilayers of polyelectrolytes. Langmuir 1996, 12, 3675-3681.
4. Zhu, Y.; Shi, J.; Shen, W.; Dong, X.; Feng, J.; Ruan, M.; Li, Y. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angew. Chem. Int. Edit. 2005, 117, 5213-5217.
5. Berg, M. C.; Zhai, L.; Cohen, R. E.; Rubner, M. F. Controlled drug release from porous polyelectrolyte multilayers. Biomacromolecules 2006, 7, 357-364.
6. Chuang, H. F.; Smith, R. C.; Hammond, P. T. Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules 2008, 9, 1660-1668.
7. Fu, J.; Ji, J.; Yuan, W.; Shen, J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 2005, 26, 6684-6692.
8. Lee, D.; Cohen, R. E.; Rubner, M. F. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 2005, 21, 9651-9659.
9. Thompson, M. T.; Berg, M. C.; Tobias, I. S.; Rubner, M. F.; Van Vliet, K. J. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion. Biomaterials 2005, 26, 6836-6845.
10. Schneider, A.; Francius, G.; Obeid, R.; Schwinte, P.; Hemmerle, J.; Frisch, B.; Schaaf, P.; Voegel, J. C.; Senger, B.; Picart, C. Polyelectrolyte multilayers with a tunable Young's modulus: influence of film stiffness on cell adhesion. Langmuir 2006, 22, 1193-1200.
11. Sanyal, O.; Sommerfeld, A. N.; Lee, I. Design of ultrathin nanostructured polyelectrolyte-based membranes with high perchlorate rejection and high permeability. Sep. Purif. Technol. 2015, 145, 113-119.
12. Sanyal, O.; Liu, Z.; Yu, J.; Meharg, B. M.; Hong, J. S.; Liao, W.; Lee, I. Designing fouling-resistant clay-embedded polyelectrolyte multilayer membranes for wastewater effluent treatment. J. Membrane Sci. 2016, 512, 21-28.
13. Kolasinska, M.; Krastev, R.; Warszynski, P. Characteristics of polyelectrolyte multilayers: effect of PEI anchoring layer and posttreatment after deposition. J. Colloid Interf. Sci. 2007, 305, 46-56.
14. Vancha, A. R.; Govindaraju, S.; Parsa, K. V.; Jasti, M.; Gonzalez-Garcia, M.; Ballestero, R. P. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC Biotechnol. 2004, 4, 23.
15. Ghostine, R. A.; Shamoun, R. F.; Schlenoff, J. B. Doping and Diffusion in an Extruded Saloplastic Polyelectrolyte Complex. Macromolecules 2013, 46, 4089-4094.
16. Cao, M.; Wang, J.; Wang, Y., Surface patterns induced by Cu2+ ions on BPEI/PAA layer-by-layer assembly. Langmuir 2007, 23, 3142-3149.
17. Silva, J. M.; Reis, R. L.; Mano, J. F. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. Small 2016, 12, 4308-4342.
18. Kiryukhin, M. V.; Man, S. M.; Sadovoy, A. V.; Low, H. Y.; Sukhorukov, G. B. Peculiarities of polyelectrolyte multilayer assembly on patterned surfaces. Langmuir 2011, 27, 8430-8436.
19. Park, J.; Hammond, P. T. Multilayer Transfer Printing for Polyelectrolyte Multilayer Patterning: Direct Transfer of Layer-by-Layer Assembled Micropatterned Thin Films. Adv. Mater. 2004, 16, 520-525.
20. Ko, H. H.; Jiang, C. Y.; Tsukruk, V. V. Encapsulating nanoparticle arrays into layer-by-layer multilayers by capillary transfer lithography. Chem. Mater. 2005, 17, 5489-5497.
21. Lu, Y. X.; Chen, X. L.; Hu, W.; Lu, N.; Sun, J. Q.; Shen, J. C. Room-temperature imprinting poly(acrylic acid)/poly(allylamine hydrochloride) multilayer films by using polymer molds. Langmuir 2007, 23, 3254-3259.
22. Reyes, D. R.; Perruccio, E. M.; Becerra, S. P.; Locascio, L. E.; Gaitan, M. Micropatterning neuronal cells on polyelectrolyte multilayers. Langmuir 2004, 20, 8805-8811.
23. Ruan, W.; Zhou, T.; Hui, G.; Wang, Y.; Chong, X.; Wang, X.; Song, W.; Han, X.; Zhao, B. Particle lithography-based patterning of polyelectrolyte template films and their application in fabrication of gold/silver nanoparticle assembly. J. Colloid Interf. Sci. 2014, 432, 65-69.
24. Koster, S.; Leach, J. B.; Struth, B.; Pfohl, T.; Wong, J. Y. Visualization of flow-aligned type I collagen self-assembly in tunable pH gradients. Langmuir 2007, 23, 357-359.
25. Leow, W. W.; Hwang, W. Epitaxially guided assembly of collagen layers on mica surfaces. Langmuir 2011, 27, 10907-10913.
26. Li, W.; Zhao, P.; Lin, C.; Wen, X.; Katsanevakis, E.; Gero, D.; Felix, O.; Liu, Y. Natural polyelectrolyte self-assembled multilayers based on collagen and alginate: stability and cytocompatibility. Biomacromolecules 2013, 14, 2647-2656.
27. Matsiko, A.; Levingstone, T. J.; O'Brien, F. J. Advanced Strategies for Articular Cartilage Defect Repair. Materials (Basel) 2013, 6, 637-668.
28. McAllister, T. N.; Maruszewski, M.; Garrido, S. A.; Wystrychowski, W.; Dusserre, N.; Marini, A.; Zagalski, K.; Fiorillo, A.; Avila, H.; Manglano, X.; Antonelli, J.; Kocher, A.; Zembala, M.; Cierpka, L.; de la Fuente, L. M.; L'Heureux, N. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009, 373, 1440-1446.
29. L'Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. New Engl. J. Med. 2007, 357, 1451-1453.
30. Adhirajan, N.; Shanmugasundaram, N.; Shanmuganathan, S.; Babu, M. Collagen-based wound dressing for doxycycline delivery: in-vivo evaluation in an infected excisional wound model in rats. J. Pharm. Pharmacol. 2009, 61, 1617-1623.
31. Adhirajan, N.; Shanmugasundaram, N.; Shanmuganathan, S.; Babu, M. Functionally modified gelatin microspheres impregnated collagen scaffold as novel wound dressing to attenuate the proteases and bacterial growth. Eur. J. Pharm. Sci. 2009, 36, 235-245.
32. Shanmugasundaram, N.; Sundaraseelan, J.; Uma, S.; Selvaraj, D.; Babu, M. Design and delivery of silver sulfadiazine from alginate microspheres-impregnated collagen scaffold. J. Biomed. Mater. Res. B. 2006, 77, 378-388.
33. Nie, C.; Yang, D.; Morris, S. F. Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med. Hypotheses 2009, 72, 679-682.
34. Altman, A. M.; Matthias, N.; Yan, Y.; Song, Y. H.; Bai, X.; Chiu, E. S.; Slakey, D. P.; Alt, E. U. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials 2008, 29, 1431-1442.
35. Carrier, P.; Deschambeault, A.; Talbot, M.; Giasson, C. J.; Auger, F. A.; Guerin, S. L.; Germain, L. Characterization of wound reepithelialization using a new human tissue-engineered corneal wound healing model. Invest. Ophth. Vis. Sci. 2008, 49, 1376-1385.
36. Rafat, M.; Matsuura, T.; Li, F.; Griffith, M. Surface modification of collagen-based artificial cornea for reduced endothelialization. J. Biomed. Mater. Res. A. 2009, 88, 755-768.
37. Liu, X.; Zheng, M.; Wang, X.; Luo, X.; Hou, M.; Yue, O. Biofabrication and Characterization of Collagens with Different Hierarchical Architectures. ACS Biomater. Sci. Eng. 2020, 6, 739-748.
38. Wang, W.; Yeung, K. W. K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017, 2, 224-247.
39. Zhao, W.; Song, W.; Cheong, L. Z.; Wang, D.; Li, H.; Besenbacher, F.; Huang, F.; Shen, C. Beyond imaging: Applications of atomic force microscopy for the study of Lithium-ion batteries. Ultramicroscopy 2019, 204, 34-48.
40. GENERAL INTRODUCTION TO ATOMIC FORCE MICROSCOPY. https://bbml.sitehost.iu.edu/afmintro.html.
41. Yu, J.; Meharg, B. M.; Lee, I. Adsorption and interlayer diffusion controlled growth and unique surface patterned growth of polyelectrolyte multilayers. Polymer 2017, 109, 297-306.
42. Potential Next Generation Soft-Lithographic Methods. https://slideplayer.com/slide/5127367/.
43. Gong, X.; Yang, J.; Han, L.; Gao, C. Influence of drying time of polyelectrolyte multilayers on the compression-induced pattern formation. Langmuir 2008, 24, 13925-13933.
44. Wang, Z.; Zhang, P.; Kirkland, B.; Liu, Y.; Guan, J. Microcontact printing of polyelectrolytes on PEG using an unmodified PDMS stamp for micropatterning nanoparticles, DNA, proteins and cells. Soft Matter 2012, 8, 7630-7637.
45. Zhu, M. J.; Lerum, M. Z.; Chen, W. How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica. Langmuir 2012, 28, 416-423.
46. Wang, F.; Liu, P.; Nie, T.; Wei, H.; Cui, Z. Characterization of a polyamine microsphere and its adsorption for protein. Int. J. Mol. Sci. 2013, 14, 17-29.
47. Tan, S. H.; Nguyen, N. T.; Chua, Y. C.; Kang, T. G. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 2010, 4, 32204.