簡易檢索 / 詳目顯示

研究生: 朱珮瑩
Ju, Pei-Ying
論文名稱: 線性矩陣不等式於具飽和致動器控制系統設計
Controller Design for Systems with Actuator Saturation:An LMI Approach
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 39
中文關鍵詞: 飽和致動器線性矩陣不等式
外文關鍵詞: LMIs, Actuator Saturation
相關次數: 點閱:81下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   實際控制系統都具有飽和致動器的情形,因此在操作上會有所限制。也就是說,設計好的輸入訊號,會因為致動器的能量或物理極限的限制而無法達到所需要的值。當控制器系統含較慢動態時,亦會導致較大的超越量及較長的安定時間甚至使系統不穩定。這種因致動器飽和所造成的問題,稱之為終結問題。
      
      本論文採用兩階段設計法的概念,來解決終結問題。首先不考慮致動器飽和的限制設計一控制器符合所要求的性能,然後針對此控制器,設計一反終結補償器,改善因致動器飽和造成的性能及穩定性問題。本論文將重點放在第二階段的補償設計,同時探討補償後系統的穩定條件。
      
      本論文採用Åström的反終結架構,並利用設計濾波器之概念,將致動器飽和對性能的影響減小,並利用圓準則穩定條件,來確保補償後系統的穩定性。

      In practice, all actuators have operation range and could lead to a sate of saturation. In other words, the realized actuator output can not meet the desired control input due to physical limit of actuator. Error, overshoot, settling time will increase and the system may even become unstable, when the controller possesses relatively slow dynamics. The problem caused by saturated actuator is known as the windup problem.
      
      The windup problem is solved by two-step design method in this article. The first stage is designing a controller for system to satisfy requested performance without considering of constrain of saturated actuator. Then, a compensator is designed with the condition of having saturation constrain to improve the performance and stability problem caused by saturating actuator. The attention will be focused on the compensator design in this article.
      
      This thesis is based on the anti-windup scheme introduced by Åström, and the design problem is regarded as a filter design to reduce the effect on performance by saturating actuator. The stability condition, circle criterion, is used to check the stability of the system after compensating.

    摘 要 英文摘要 致 謝 目 錄 I 圖目錄 III 第一章緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.2.1 反重置終結補償 2 1.2.2 條件法 3 1.2.3 傳統反終結補償 3 1.2.4 觀測器法 4 1.3 論文大綱 5 第二章 LMI相關之數學基礎 6 2.1 線性矩陣不等式(LMI) 6 2.2 系統的範數 9 2.3 反終結控制系統的架構 12 2.4 濾波器之LMI設計 13 2.5 反終結控制器的穩定性 16 第三章 反終結控制器設計 17 3.1 反終結補償器設計 17 3.1.2 基於H2性能之反終結控制器設計 19 3.1.3 基於H∞性能之反終結控制器設計 20 3.2 反終結補償器之穩定性分析 21 3.3 反終結控制器的設計步驟 21 第四章 電腦數值模擬 24 第五章 結論 32 5.1 結論 32 5.2 未來發展方向 32 附錄一 Q、W矩陣特徵值 34 參考文獻 36 自 述 39

    Åström, K. J. and Hägglund, T., Automatic Tuning of PID Controller, Instrument Society of America, Research Triangle Park, NC, 1988.
    Åström, K. J. and Rundqwist, L., “Integrator Windup and How to Avoid It,” In Proceedings of the 1989 American Control Conference, pp. 1693-1698, 1989.
    Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994.
    Campo, P. J. and Morari, M., “Robust Control of Processes Subject to Saturation Nonlinearities,” Computers and Chemical Engineering, Vol. 14, No. 4/5, pp. 343-358, 1990.
    Doyle, J. C., Smith, R. S. and Enns, D. F., “Control of Plants with Input Saturation Nonlinearities,” In Proceedings of the 1987 American Control Conference, pp. 1034-1039, 1987.
    Fertik, H. A. and Ross, C. W., “Direct Digital Control Algorithm with Anti-windup Feature,” ISA Transactions, Vol. 6, No. 4, pp. 317-328, 1967.
    Geromel, J. C. and de Oliveira, M. C., “H2 and H∞ robust filtering for convex bounded uncertain systems,” IEEE Transaction on Automatic Control, Vol. 46, Issue:1, pp. 100-107, 2001.
    Glattfelder, A. H. and Schaufelberver, W., “Stability Analysis of Single-loop Control Systems with Satruration and Antireset-windup circuits,” IEEE Trans. Automatic Control, Vol. 28, No. 12, pp. 1074-1081, December 1983.
    Gomes da Silva Jr, J. M., Tarbouriech, S. and Reginatto, R., “Analysis of Regions of Stability for Linear Systems with Saturating Input through An Anti-windup Scheme,” IEEE International Symposum on Computer Aided Control System Design Proceedings September 18-20, 2002.
    Hanus, R., Kinnaert, M. and Henrotte, J. L., “Conditioning Technique, A General Anti-windup and Bumpless Transfer Method,” Automatica, Vol. 23, No. 6, pp. 729-739, 1987.
    Kapasouris, P. and Athans, M., “Multivariable Control Systems with Saturating Actuators, Antireset Windup Strategies,” In Proceedings of the 1985 American Control Conference, pp. 1579-1584, 1985.
    Kapasouris, P., Athans, M., and Stein, G., “Design of Feedback Control Systems for Stable Plants with Saturating Actuators,” In Proceedings of the 27th Conference on Decision and Control Austin, Texas, December, 1988.
    Kapoor, N., Teel, A. R. and Daoutidis, P., “An Anti-Windup Design for Linear Systems with Input Saturation,” Automatica, Vol. 34, No. 5, pp. 559-574, 1998.
    Kothare, M. V., “Control of Systems Subject to Constraints,” California Institute of Technology Division of Chemistry and Chemical Engineering Pasadena, California, March, 1997.
    Krikelis, N. J, “State Feedback Integral Control with Intelligent Integrators,” Int. J. Control, Vol. 32, No. 3, pp. 465-473, 1980.
    Lee, Y. S., “LMI in Control and Estimation,” on line Lecture Electrical Engineering of Seoul National University, 2003.
    Nemirovskii, A. and Gahinet, P., “The Projective Method for Solving Linear Matrix Inequalities,” In Proceedings of the 1985 American Control Conference, pp. 840-845, 1995.
    Tan, Z., Soh, Y. C. and Xie, L., “H2 Optimal Envelope-constrained FIR Filter Design:An LMI Approach,” Signal Processing, Vol. 75, Issue:2, pp. 141-149, June, 1999.
    Tan, Z., Soh, Y. C. and Xie, L., “H∞ Optimal Envelope-constrained FIR filter Design with Uncertain Input,” Signal Processing, Vol. 81, Issue:7, pp. 1407-1415, July, 2001.
    Walgama K. S. and Sternby J., “Inherent Observer Property In A Class of Anti-windup Compensators,” Int. J. Control, Vol. 52, No. 3, pp. 705-724, 1990.
    邱顯寰, “具飽和制動器之控制系統設計,” 國立成功大學航空太空研究所碩士論文, 民國83年.
    俞立, 魯棒控制, 清華大學出版社, 2002

    下載圖示 校內:立即公開
    校外:2005-08-04公開
    QR CODE