| 研究生: |
徐偉席 Hsu, Wei-Hsi |
|---|---|
| 論文名稱: |
磷化銦鋁與砷化銦鋁系列半導體式
氫氣感測器之研製 Fabrication of InAlP- and InAlAs-Based Semiconductor Hydrogen Sensors |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 氫氣 、半導體 、感測器 、砷化銦鋁 、磷化銦鋁 、蕭特基 |
| 外文關鍵詞: | sensor, hydrogen, semiconductor, Schottky, InAlAs, InAlP |
| 相關次數: | 點閱:83 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
文獻所記載,除了鈀金屬之外,白金族以鉑金屬對氫氣選擇性佳,並較其他白金族金屬容易取得。因此在本論文中,研製了一系列以鉑為觸媒金屬的蕭特基接觸式氫氣感測器元件,分1. 磷化銦鋁 2. 砷化銦鋁兩種材料。並分析在不同的氫氣濃度及不同的操作溫度下的感應特性。
為了研究費米能階釘住效應對氫氣感測的影響,製作以鉑為觸媒金屬的磷化銦鋁金-半接面及金-氧-半接面蕭特基二極體,並對其氫氣反應特性作量測與分析做比較,由實驗的結果與理論分析在靈敏度、電流變化量以及與氫氣反應的時間有氧化層結構的氫氣感測器且有較好的氫氣感測特性。
另一方面,探究不同的鉑金屬厚度(如:50Å和100Å)對氫氣感測器的影響,由實驗結果可以得知,金屬厚度為50Å的鉑/砷化銦鋁蕭特基二極體式氫氣感測器在較低的氫氣濃度會有較佳的表現;相反的,鉑金屬厚度為100Å之氫氣感測器是在較高的氫氣濃度下才有較佳的表現。
Applications of hydrogen gas have spread over many fields with the vast advance in scientific technology. Because hydrogen gas is flammable and explosive, how to monitor and detect the leakage of hydrogen gas becomes a more importance issue. Compared with conventional hydrogen sensors, the advantages of our studied devices include small size, simple fabrication, etc.
According to the related research reports, except Pd metal, Pt also shows high sensitivity and selectivity to hydrogen gas, especially at higher temperature. In this dissertation, we present a series of Pt catalytic metal-based Schottky diode hydrogen sensors with two kinds of III-V semiconductor, i.e., In0.5Al0.5P and In0.42Al0.58As. The temperature dependences on hydrogen sensing characteristics in steady-state and transient response are studied. In addition, the hydrogen detecting limits of studied devices are also demonstrated.
First, in order to study the influence between Fermi-level pinning effect and hydrogen sensing, the Pt/In0.5Al0.5P MOS and MS Schottky diode hydrogen sensors are fabricated and systemically studied. From experimental results, it is known that the MOS-type hydrogen sensor exhibits high hydrogen detecting sensitivity, larger current variation, and short hydrogen response time than that of MS-type hydrogen sensor.
By comparison of catalytic metal thickness (e.g. 50Å and 100Å), the 50-Å-Pt-In0.42Al0.58As Schottky diode exhibits larger sensitivity and barrier height change under low hydrogen concentration ambient. On the contrary, under high hydrogen concentration ambient, the 100-Å-Pt-In0.42Al0.58As Schottky diode shows better hydrogen detection capability.
Reference
[1] H. Sundgren, I. Lundström, F. Winquist, I. Lukkari, R. Carlesson, and S. Wold,” Evaluation of a Multiple Gas-Mixture with a Simple MOSFET Gas Sensor Array and Pattern-Recognition,” Sens. Actuators B, vol. 2, pp.115-123, 1990.
[2] N. Yamazoe and N. Miura, “Development of gas sensors for environmental protection,” IEEE Trans. Components, Packing and Manufacturing Technology A, vol.18, pp.252-256, 1995.
[3] C. C. Chang, Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, pp. 624-628, 1997.
[4] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
[5] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
[6] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
[7] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
[8] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications, ”Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.2, pp. 431-440L, 1997.
[9] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A.L. Spetz, and P. Tobias,”Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol, 18, pp. 287-289, 1997.
[10] M. Duffy, W.G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE, Vol.18, pp. 779 –784, 2002.
[11] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
[12] W.J. Buttner, G.J. Maclay, and J.R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans.Electron Devices, vol. 35,pp. 793 –799, 1988.
[13] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
[14] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.
[15] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.2, pp. 431 –440L, 1997.
[16] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A.L. Spetz, and P. Tobias,”Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., Vol, 18, pp. 287 –289, 1997.
[17] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sensor and Actuators B, vol. 85, pp. 10-18, 2002.
[18] M. Duffy, W.G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE , vol.18, pp. 779 –784 2002.
[19] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection,” IEEE Tran.Components, Package, and Manufacturing, vol. 35,pp. 793 –799, 1995.
[20] C. C. Chang, Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, pp. 624-628, 1997.
[21] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
[22] W. C. Liu, H. J. Pan, H. I Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol.48, pp. 1938 – 1944, 2001.
[23] S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie, and W. C. Liu, “Design consideration of emitter-base junction structure for InGaP/GaAs heterojunction bipolar transistors,” Solid-State Electron., vol. 43, no. 2, pp. 297-304, 1999.
[24] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen Sensing Pd/InGaP Metal-Semiconductor (MS) Schottky Diode Hydrogen Sensor,” Semicond. Sci. Technol., vol. 18, pp.615-619, 2003.
[25] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of A New Pt/Oxide/In0.49Ga0.51P Hydrogen-Sensing Schottky Diode,” Sens. Actuators B. vol. 94, pp. 145-151, 2003.
[26] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A New Pd/Oxide/Al0.3Ga0.7As MOS Hydrogen Sensor,” IEEE Electron Device Let, vol. 24, pp. 390-392, 2003.
[27] Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative Hydrogen Sensing Performances of Pd- and Pt-InGaP Metal-Oxide-Semiconductor Schottky Diodes”, J. Vac. Sci. Technol. B, vol. 21, p.2471-2477, 2003.
[28] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of Hydrogen-Sensing Properties of Pd/lGaAs-Based Schottky Diodes”, IEEE Trans. Electron Devices, vol. 50, p.2532-2539, 2003.
[29] S. Seki, O. Kogure, and B. Tsujiyamma, “ A semi-empirical model for the field-effect mobility of hydrogenated polycrystalline silicon MOSFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 669-674, 1988.
[30] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,” IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
[31] R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen exposure,” IEEE Trans. Nuclear Science, vol. 41, pp. 1844-1853, 1994.
[32] T. Wang, C. Huang, P. C. Chou, S. S. S. Chung, and T. E. Chang, “Effect of hot carrier induced interface state generation in submicron LDD MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 1618-1622, 1994.
[33] M. Cao, T. Zhao, K. C. Saraswat, J. D. Plummer, “Study on hydrogenation of polysilicon thin film transistors by ion implatation,” IEEE Trans. Electron Devices, vol. 42, pp. 1134-1140, 1995.
[34] I. C. Kizilyalli, J. W. Lyding, and K. Hess, “ Deuterium post-metal annealing of MOSFET’s for improved hot carrier reliability,” IEEE Electron Device Lett., vol. 18, pp. 81-83, 1997.
[35] H. Seo, T. Endoh, H. Fukuda and S. Nomura, “High sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron Lett., vol. 33, pp. 535-536, 1997.
[36] L. Poteat and B. Lalevic, Pd-MOS hydrogen and hydrocarbon sensor device, IEEE Electron Device Lett., vol.2, pp.32-34, 1981.
[37] D. Briand, H. Sundrgen, B. van der Schoot, I. Lundström, and N. F. de. Rooij, Thermally isolated MOSFET for gas sensing application, IEEE Electron Device Lett., vol.22, pp.11-13, 2001.
[38] K. K. Ng, Complete guide to semiconductor devices, 2002, New York
[39] K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol, vol. 16, pp. 997-1001, 2001.
[40] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
[41] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, Chun-Yuan Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes” Semicond. Sci. Technol., vol. 19, pp. 778-782, 2004.
[42] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, and W. C. Liu, “Temperature-dependent hydrogen sensing characteristics of a Pd/oxide/Al0.24Ga0.76As high electron mobility transistor (HEMT)”, IEE Electron. Lett., vol. 40, pp. 1608-1609, 2004.
[43] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing properties of a Pt-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)”, Appl. Phys. Lett., vol. 86, 2005.
[44] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol.26, pp.55-57, 1975.
[45] R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studied of Pd metal/insulator/semiconductor diode H2 sensors”, J. Appl. Phys., vol.62, pp.1084-1092, 1987.
[46] S. Basu and A. Dutta, “Room-temperature hydrogen sensors based on ZnO,” Mat. Chem. Phys., vol. 47, pp. 93-96, 1997.
[47] L. Yadava, R. Dwivedi, and S. K. Srivastava, “A titanium dioxide-based MOS hydrogen sensor,” Solid-St. Electron., vol. 33, pp. 1229-1234, 1990.
[48] B. B. Kuliev, B. Lalevic, M. Yousuf, and D. M. Safarov, “New hydrogen-sensitive metal-InP diode,” Sov. Phys. Semicond., vol. 17, pp. 875-876, 1983.
[49] L. M. Lechuga, A. Calle, D. Golmayo, and P. Tejedor and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., vol. 138, pp. 159-162, 1991.
[50] L. M. Lechuga, A. Calle, D. Golmayo, and P. Tejedor and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4, pp.515-518, 1991.
[51] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative Hydrogen-Sensing Study of Pd/GaAs and Pd/InP Metal-Oxide-Semiconductor Schottky Diodes,” Jpn. J. Appl. Phys., vol.40, pp. 6254-6259, 2001.
[52] R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, ”Thin-film palladium and silver alloys and layers for metal-insulator-semiconductor sensors”, J. Appl. Phys., vol. 62, pp. 1074-1084, 1987.
[53] Y. Morita, K. I. Nakamura, and C. Kim, ” Langmuir analysis on hydrogen gas response of palladium-gate FET”, Sens. Actuators B., vol. 33, pp. 96-99, 1996.
[54] M. A. Vannice, J. E. Benson, and M. Boudart, J. Catal., vol. 16, pp. 348, 1995.
[55] A. Abe and T. Hosoya, Proc. World Hydrogen Energy Conf., 5th, Toronto, vol. 4, pp.1893, 1984.
[56] I. Lundström, M. Armgarth, and L. G.. Petersson, CRC Crit. Rev. Solid State Mater. Sci., vol. 15, pp. 201, 1989.
[57] R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studied of Pd metal/insulator/semiconductor diode H2 sensors”, J. Appl. Phys., vol.62, pp.1084-1092, 1987.
[58] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995.
[59] I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol.14 pp.1539-1545, 1996.
[60] Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Diamond microelectronic gas sensors,” Sens. Actuators B, vol. 33, pp. 100-104,1996.
[61] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators, vol.1, pp.403-426, 1981.
[62] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators B, vol.1, pp. 403-426, 1981.
[63] R. J. Silbey and R. A. Alberty, Physical chemistry – 3rd ed., John Willey & Sons, Inc., New York, 2001.
[64] P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M. Glavmo, and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases”, Sens. Actuators B, vol. 43, pp. 52-59, 1997.
[65] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A New Hydrogen Sensor Based on a Pt/GaAs Schottky Diode”, J. Electrochem. Soc., vol. 138, pp. 159-161, 1991.
[66] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd/GaAs Schottky Diodes Prepared by Electroless Plating Technique”, Semicond. Sci. Technol, vol. 18, pp. 620-626, 2003.
[67] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
[68] L. M. Lechuga, A. Calle, D.Golmayo, and P. Tejedor and F. Briones, “A New Hydrogen Sensor Based on a Pt/GaAs Schottky Diode,” J. Electrochem. Soc., vol. 138, pp. 159-162,1991.
[69] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A Novel High-Sensitivity Pd/InP Hydrogen Sensor Fabricated by Electroless Plating”; Sens. Actuators B, vol. 85, pp. 10-18, 2002.
[70] H. I. Chen and Y. I. Chou, “ A Comparative Study on Hydrogen Sensing Performances between Electroless Plated and Thermal Evaporated Pd/InP Schottky Diodes”, Semicond. Sci. Technol, vol. 18, pp. 104-110, 2003.
[71] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-St. Electron., vol. 25, pp. 753-758, 1982.
[72] V. Battut, J. P. Blanc, E. Goumet, V. Soulière, and Y. Monteil, “NO2 sensor based on InP epitaxial thin layers” Thin Solid Films, vol. 348, pp. 266-272, 1999.
[73] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive Study of Adsorption Kinetics for Hydrogen Sensing with An Electroless-Plated Pd/InP Schottky Diode”, Sens. Actuators B, vol. 92, pp. 6-16, 2003.
[74] H. I. Chen and Y. I. Chou, “Evaluation of the Perfection of the Pd-InP Schottky Interface from the Energy viewpoint of Hydrogen Adsorbates”, Semicond. Sci. Technol, vol. 19, pp. 39-44, 2004.
[75] V. Battut, J. P. Blanc, and C. Maleysson, “Gas sensitivity of InP epitaxial thin layers” Sens. Actuators B, vol. 44, pp. 503-506, 1997.
[76] Y. I. Chou, C. M. Chen, and H. I. Chen, “A New Pd/InP Schottky Hydrogen Sensor Fabricated by Electrophoretic Deposition with Pd Nanoparticles“, IEEE Electron Device Lett., vol. 26(2), pp. 62-65, 2005.
[77] H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor”, IEE Electron. Lett., vol. 38, no.2, pp. 92-94, 2002.
[78] N. Yamamoto, S. Tonomura, F. Matsuoka, and H. Tsubomura, ” Effect of various substrates on the hydrogen sensitivity of palladium-semiconductor diodes”, J. Appl. Phys. vol. 52, pp. 6227-6230, 1981.
[79] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A new Pt/Oxide/In0.49Ga0.51P MOS schottky diode hydrogen sensor,” IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002.
[80] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, Chin-Chuan Cheng, and Wen-Chau Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors”, IEEE Sensors Journal, vol. 4, no.1, pp. 72-79, 2004.
[81] L. Y. Chen, G. W. Hunter, P. G. Neudeck, and D. Knight, “Surface and interface properties of PdCr/SiC Schottky diode gas sensor annealed at 425°C”, Solid-State Electron., vol. 42, pp. 2209-2214, 1998.
[82] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, and M. Eickhoff, ” A highly stable SiC based microhotplate NO2 gas-sensor”, Sens. Actuators B, vol. 78, pp. 216-220, 2001.
[83] C. K. Kim, J. H. Lee, N. I. Cho, and D. J. Kim, ” A study on a platinum–silicon carbide Schottky diode as a hydrogen gas sensor”, Sens. Actuators B, vol. 66, pp. 116-118, 2000.
[84] B. P. Luther, S. D. Wolter, and S. E. Mohney, ” High temperature Pt Schottky diode gas sensors on n-type GaN”, Sens. Actuators B, vol. 56, no.1, pp. 164-168, 1999.
[85] D. S. Lee, J. H. Lee, Y. H. Lee, and D. D. Lee, ” GaN thin films as gas sensors”, Sens. Actuators B, vol. 89, no.2, pp. 305-310, 2003.
[86] J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher, and M. Stutzmann, ”Gas sensitive GaN/AlGaN-heterostructures”, Sens. Actuators B, vol. 87, pp. 425-430, 2002.
[87] B. S. Kang, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, ” AlGaN/GaN-based metal–oxide–semiconductor diode-based hydrogen gas sensor”, Appl. Phys. Lett., vol. 84, pp. 1123-1125, 2004.
[88] A. L. Holmes, “Compound semiconductor native oxide-based technologies for optical and electrical devices grown on GaAs substrates using MOCVD,” Ph.D. dissertation, Univ. Texas, Austin, 1999.
[89] P. J. Barrios, D. C. Hall, G. L. Snider, T. H. Kosel, U. Chowdhury, and R. D. Dupuis, “Electrical properties of InAlP native oxides for GaAsbased MOS applications,” in Proc. Int. SOTAPOCS XXXIV, vol. 2001-1,pp. 258–264. ACKNOWLEDGMENT
[90] Y. Cao, J. Zhang, X. Li, T. H. Kosel, P. Fay, D. C. Hall, R. E. Cook, X. Zhang, and R. D. Duipuis, “Electrical properties and microstructure of InAlP native oxides for MOS applications,” in Proc. Electron. Mater. Conf. , 2004, p. 88.
[91] W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, no. 6, pp. 630-633, 1998.
[92] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
[93] M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing enviroments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998.
[94] M. Eriksson, I. Lundström, and L. G. Ekedahl, “A model of the Temkin isotherm behavior for hydrogen adsorption at Pd-SiO2 interfaces,” J. Appl. Phys., vol. 82, pp. 3143-3146, 1997.
[95] S. A Clark, S. P Wilks, R. H. Williams, J. K. Luo, A. Perez-Rodriguez, A. Cornet and J. R. Morante. ‘The characteristics of intimate Au-InAlAs Schottky diodes: a mismatch dependence study’. Materials Science and Engineering B28, page 433, 1994.
[96] M. Missous, E. H. Rhoderick, D. A. Woolf and S. P.Wilks. 'On the Richardson constant of intimate metal GaAs Schottky barriers'. Semicond. Sci. Technol, vol. 7, page 218, 1992.
[97] K. Hong, D. Pavlidis, and F. sejalon,” Material and Electrical Characteristics of Iron Doped Pt-InAlAs Schottky Diodes Grown by LP-MOCVD”, JOURNAL OF ELECTRONIC MATERIALS, vol.25, no.4, 1996.
[98] H. Sugiyama, H. Yokoyama, and K. Wada,” Photoreflectance mapping of InAlAs Schottky diode layer on InAlAs/InGaAs high electron mobility transistor wafers”, J. Appl. Phys., vol. 86, pp. 374-379, 1999.