| 研究生: |
吳欣潔 Wu, Hsin-Chieh |
|---|---|
| 論文名稱: |
探討肥胖於新生鼠缺氧窒息腦傷的影響及可能機制 The Effect of Neonatal Obesity on Hypoxic-ischemic Brain Injury in Rat Pups |
| 指導教授: |
謝奇璋
Shieh, Chi-Chang 黃朝慶 Huang, Chao-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 幼鼠 、新生兒 、肥胖 、缺氧窒息性腦傷 |
| 外文關鍵詞: | apoptosis, obesity, neonate, rat, HI, JNK, brain, hypoxic-ischemia |
| 相關次數: | 點閱:222 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新生兒缺氧窒息腦病變是造成嬰幼兒神經病變最常見的原因,除了嚴重威脅新生兒的生命,在存活者中也常導致永久性的神經缺陷諸如腦性麻痺、智能障礙和癲癇。另外,肥胖問題在現今社會中有日趨嚴重的傾向。先前的研究已顯示,肥胖的成人相較於非肥胖的成人更易發生腦部中風且預後較差。因此我們假設新生兒期肥胖對於新生兒缺氧窒息腦病變也有不良影響。在此篇研究中,我們利用已妥善建立於新生幼鼠的缺氧窒息模式來驗証由過度餵養所導致的過胖幼鼠比起正常餵養的幼鼠有更嚴重的缺氧窒息腦傷。
在幼鼠出生後的第一天,我們利用每胎育養隻數減半的方法定義過度餵養組(OF group)為每胎六仔,而正常餵養組(NF group)為每胎十二仔。於出生後第七天觀察幼鼠肥胖的情形。相較於正常餵養組,過度餵養組幼鼠有顯著的體重及脂肪增加(P<0.001),且血中葡萄糖濃度也明顯升高(P<0.01)。
在缺氧窒息處理中,過度餵養組幼鼠的死亡率相對增高。此外,以行為測試及病理切片進行長期的腦傷評估。結果顯示,相較於正常餵養組,缺氧後倖存的過度餵養組成鼠其學習能力更差且有較嚴重的腦部缺損。
利用Nissl及TUNEL染色缺氧後24小時的腦部切片,我們觀察到過度餵養組的腦傷程度較高且TUNEL陽性的細胞多於正常餵養組。以western blotting進行細胞凋亡的分析,發現在過度餵養組經缺氧後24小時,大腦皮質中caspase-3分子的活化程度明顯高於正常餵養組。此外,藉由免疫螢光染色,我們也觀察到在過度餵養組缺氧後之大腦皮質與海馬迴中,有更多細胞出現核濃縮的現象,並呈現細胞核轉位(nulear-translocation)的凋亡相關因子AIF。這些研究結果顯示,粒線體依賴性的細胞凋亡參與在因新生期肥胖而惡化的缺氧窒息腦傷中。
接下來我們檢驗,是否在過度餵養導致的新生期肥胖伴隨有內質網壓力(ER stress)及JNK分子的過度激活。利用western blotting分析內質網陪護蛋白(chaperon protein)分子Grp78的表現及JNK磷酸化程度。結果顯示,不論缺氧前後,相較於正常餵養組,過度餵養組大腦皮質中的JNK活化程度均較高,而Grp78則在缺氧前後無明顯變化,於兩組亦無差異。進一步分析JNK下游促細胞凋亡的分子BimEL的活化情形發現,缺氧後過度餵養組中BimEL於Ser65位點的磷酸化較正常餵養組增加。然而另一上游分子—壓力激活蛋白磷酸酶p38則在缺氧前後無顯著活化。
為了証明新生期肥胖所誘發的JNK過度激活會惡化缺氧窒息性腦傷。我們在過度餵養組中,利用顱內注射的方法給予JNK的抑制劑SP600125阻斷JNK活化後的訊息傳遞。實驗結果顯示,相較於安慰劑,給予SP600125改善了缺氧處理中幼鼠的死亡率且降低缺氧後JNK及BimEL的活化,並在病理學上提供予過度餵養組幼鼠有效的腦部保護。根據以上的實驗,我們認為JNK的過度活化乃為新生期肥胖致使缺氧窒息性腦傷加重的一個重要因素。
Perinatal hypoxic–ischemic (HI) brain damage remains a major cause of acute mortality and chronic neurologic morbidity in children. Obesity is a growing problem in modern society. Evidence has shown that obese adult persons suffer a higher risk of stroke and have worse prognosis than non-obese adults. Here, using a well-established HI brain injury model in neonatal rats, we first tested the hypothesis that the over-fed (OF) obese rat pups had a higher degree of HI brain injury compared with the normal-fed (NF) rat pups.
The OF group, defined by reducing the litter size to 6 pups from postnatal day 1 (P1), had a significantly higher body-weight (P<0.001), excess fat deposition in the subcutaneous and perirenal space (P<0.001) and bore hyperglycemia (P<0.01) at P7 compared with the NF group defined by keeping the litter size of 12 pups. The OF-HI group had a higher mortality rate than the NF-HI group during HI. In addition, the OF-HI survivors showed a significantly poorer learning behavior performance assessed by water maze task and higher degree of brain damage measured by pathology at adulthood.
Twenty-four hours after HI, more brain damage (Nissl stain) and more TUNEL postive cells were observed in the OF-HI brain than in the NF-HI brain. Caspase-3 activation also significantly increased in cerebral cortex in the OF-HI group compared with the NF-HI group. Immunofluorescence imaging showed that the OF-HI group had increased number of injured cells that exhibited pyknotic morphology and cells that showed nuclear translocalization of apoptotic inducing factor in the cortex and hippocampus than the NF-HI group. These results suggest that mitochondria-dependent apoptosis is involved in the obesity-aggravated HI neuronal death in the neonatal rat brain.
Thus, we examined whether the over-nutrient status in the neonatal period would cause endoplasmic reticulum (ER) stress and hyperactivation of c-Jun N-terminal kinase (JNK). Our results showed that there was no difference in the ER chaperon protein Grp78 expression between the two groups. In contrast, the OF pups had higher levels of activated JNKs in the cortex than the NF group before and after HI. Furthermore, the OF-HI group had increased phosphorylation at Ser65 site of cell death molecular BIMEL, and the activation of stress-activated protein kinase p38 was not detected after HI in the two groups. Intracerebroventricular administration of JNK inhibitor SP600125 was operated to prove the causal relationship of JNK hyper-activation in neonatal obesity-aggravated HI brain injury. In the OF-HI group, JNK inhibition reduced the mortality during HI and BIMEL phosphorylation after HI, and also provided significant neuroprotection at pathological level. In conclusion, our study shows that obesity in the neonatal period could aggravate HI neuronal death and JNK activation plays a significant role in obesity-aggravated HI neuronal death in neonatal rats.
ALY, H., KHASHABA, M. T., EL-AYOUTY, M., EL-SAYED, O. and HASANEIN, B. M. IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Dev 28: 178-82, 2006.
ARMITAGE, J. A., KHAN, I. Y., TAYLOR, P. D., NATHANIELSZ, P. W. and POSTON, L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 561: 355-77, 2004.
ARMITAGE, J. A., TAYLOR, P. D. and POSTON, L. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol 565: 3-8, 2005.
BADR ZAHR, L. K. and PURDY, I. Brain injury in the infant: the old, the new, and the uncertain. J Perinat Neonatal Nurs 20: 163-75; quiz 176-7, 2006.
BAIRD, T. A., PARSONS, M. W., PHANH, T., BUTCHER, K. S., DESMOND, P. M., TRESS, B. M., COLMAN, P. G., CHAMBERS, B. R. and DAVIS, S. M. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke 34: 2208-14, 2003.
BECKER, E. B., HOWELL, J., KODAMA, Y., BARKER, P. A. and BONNI, A. Characterization of the c-Jun N-terminal kinase-BimEL signaling pathway in neuronal apoptosis. J Neurosci 24: 8762-70, 2004.
BENNETT, B. L., SASAKI, D. T., MURRAY, B. W., O'LEARY, E. C., SAKATA, S. T., XU, W., LEISTEN, J. C., MOTIWALA, A., PIERCE, S., SATOH, Y., BHAGWAT, S. S., MANNING, A. M. and ANDERSON, D. W. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A 98: 13681-6, 2001.
BHAKAR, A. L., HOWELL, J. L., PAUL, C. E., SALEHI, A. H., BECKER, E. B., SAID, F., BONNI, A. and BARKER, P. A. Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of Bad. J Neurosci 23: 11373-81, 2003.
BORSELLO, T., CLARKE, P. G., HIRT, L., VERCELLI, A., REPICI, M., SCHORDERET, D. F., BOGOUSSLAVSKY, J. and BONNY, C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9: 1180-6, 2003.
BOULLU-CIOCCA, S., DUTOUR, A., GUILLAUME, V., ACHARD, V., OLIVER, C. and GRINO, M. Postnatal diet-induced obesity in rats upregulates systemic and adipose tissue glucocorticoid metabolism during development and in adulthood: its relationship with the metabolic syndrome. Diabetes 54: 197-203, 2005.
CARBONI, S., ANTONSSON, B., GAILLARD, P., GOTTELAND, J. P., GILLON, J. Y. and VITTE, P. A. Control of death receptor and mitochondrial-dependent apoptosis by c-Jun N-terminal kinase in hippocampal CA1 neurones following global transient ischaemia. J Neurochem 92: 1054-60, 2005.
CATALANO, P. M. and EHRENBERG, H. M. The short- and long-term implications of maternal obesity on the mother and her offspring. Bjog 113: 1126-33, 2006.
CLODFELDER-MILLER, B., DE SARNO, P., ZMIJEWSKA, A. A., SONG, L. and JOPE, R. S. Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. J Biol Chem 280: 39723-31, 2005.
CRYER, A. and JONES, H. M. The early development of white adipose tissue. Effects of litter size on the lipoprotein lipase activity of four adipose-tissue depots, serum immunoreactive insulin and tissue cellularity during the first four weeks of life in the rat. Biochem J 178: 711-24, 1979.
DAS, U. G. and SYSYN, G. D. Abnormal fetal growth: intrauterine growth retardation, small for gestational age, large for gestational age. Pediatr Clin North Am 51: 639-54, viii, 2004.
EDWARDS, A. D. and AZZOPARDI, D. V. Therapeutic hypothermia following perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 91: F127-31, 2006.
ELDAR-FINKELMAN, H., SCHREYER, S. A., SHINOHARA, M. M., LEBOEUF, R. C. and KREBS, E. G. Increased glycogen synthase kinase-3 activity in diabetes- and obesity-prone C57BL/6J mice. Diabetes 48: 1662-6, 1999.
FERRIERO, D. M. Neonatal brain injury. N Engl J Med 351: 1985-95, 2004.
GAO, Y., SIGNORE, A. P., YIN, W., CAO, G., YIN, X. M., SUN, F., LUO, Y., GRAHAM, S. H. and CHEN, J. Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab 25: 694-712, 2005.
GUAN, Q. H., PEI, D. S., LIU, X. M., WANG, X. T., XU, T. L. and ZHANG, G. Y. Neuroprotection against ischemic brain injury by SP600125 via suppressing the extrinsic and intrinsic pathways of apoptosis. Brain Res 1092: 36-46, 2006.
HANKEY, G. J. Potential new risk factors for ischemic stroke: what is their potential? Stroke 37: 2181-8, 2006.
HATTORI, H. and WASTERLAIN, C. G. Posthypoxic glucose supplement reduces hypoxic-ischemic brain damage in the neonatal rat. Ann Neurol 28: 122-8, 1990.
HIROSUMI, J., TUNCMAN, G., CHANG, L., GORGUN, C. Z., UYSAL, K. T., MAEDA, K., KARIN, M. and HOTAMISLIGIL, G. S. A central role for JNK in obesity and insulin resistance. Nature 420: 333-6, 2002.
HU, B. R., LIU, C. L., OUYANG, Y., BLOMGREN, K. and SIESJO, B. K. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab 20: 1294-300, 2000.
JOHNSTON, M. V. Excitotoxicity in neonatal hypoxia. Ment Retard Dev Disabil Res Rev 7: 229-34, 2001.
KAWAMURA, M., NAKAJIMA, W., ISHIDA, A., OHMURA, A., MIURA, S. and TAKADA, G. Calpain inhibitor MDL 28170 protects hypoxic-ischemic brain injury in neonatal rats by inhibition of both apoptosis and necrosis. Brain Res 1037: 59-69, 2005.
KURTH, T., GAZIANO, J. M., BERGER, K., KASE, C. S., REXRODE, K. M., COOK, N. R., BURING, J. E. and MANSON, J. E. Body mass index and the risk of stroke in men. Arch Intern Med 162: 2557-62, 2002.
LIOU, A. K., ZHOU, Z., PEI, W., LIM, T. M., YIN, X. M. and CHEN, J. BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. Faseb J 19: 1350-2, 2005.
MORRIS, R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11: 47-60, 1984.
NORTHINGTON, F. J., FERRIERO, D. M., FLOCK, D. L. and MARTIN, L. J. Delayed Neurodegeneration in Neonatal Rat Thalamus after Hypoxia-Ischemia is Apoptosis. The Journal of Neuroscience 21: 8, 2001a.
NORTHINGTON, F. J., FERRIERO, D. M., GRAHAM, E. M., TRAYSTMAN, R. J. and MARTIN, L. J. Early Neurodegeneration after Hypoxia-Ischemia in Neonatal Rat Is Necrosis while Delayed Neuronal Death Is Apoptosis. Neurobiol Dis 8: 207-19, 2001b.
NORTHINGTON, F. J., FERRIERO, D. M. and MARTIN, L. J. Neurodegeneration in the thalamus following neonatal hypoxia-ischemia is programmed cell death. Dev Neurosci 23: 186-91, 2001c.
NURMI, A., GOLDSTEINS, G., NARVAINEN, J., PIHLAJA, R., AHTONIEMI, T., GROHN, O. and KOISTINAHO, J. Antioxidant pyrrolidine dithiocarbamate activates Akt-GSK signaling and is neuroprotective in neonatal hypoxia-ischemia. Free Radic Biol Med 40: 1776-84, 2006.
OAKDEN, E., CHISWICK, M., ROTHWELL, N. and LODDICK, S. The influence of litter size on brain damage caused by hypoxic-ischemic injury in the neonatal rat. Pediatr Res 52: 692-6, 2002.
OKUNO, S., SAITO, A., HAYASHI, T. and CHAN, P. H. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci 24: 7879-87, 2004.
OZCAN, U., CAO, Q., YILMAZ, E., LEE, A. H., IWAKOSHI, N. N., OZDELEN, E., TUNCMAN, G., GORGUN, C., GLIMCHER, L. H. and HOTAMISLIGIL, G. S. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457-61, 2004.
PAN, W. H., FLEGAL, K. M., CHANG, H. Y., YEH, W. T., YEH, C. J. and LEE, W. C. Body mass index and obesity-related metabolic disorders in Taiwanese and US whites and blacks: implications for definitions of overweight and obesity for Asians. Am J Clin Nutr 79: 31-9, 2004.
PHILLIS, J. W. and O'REGAN, M. H. The role of phospholipases, cyclooxygenases, and lipoxygenases in cerebral ischemic/traumatic injuries. Crit Rev Neurobiol 15: 61-90, 2003.
PILITSIS, J. G., DIAZ, F. G., O'REGAN, M. H. and PHILLIS, J. W. Differential effects of phospholipase inhibitors on free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury. Brain Res 951: 96-106, 2002.
PIRIANOV, G., BRYWE, K. G., MALLARD, C., EDWARDS, A. D., FLAVELL, R. A., HAGBERG, H. and MEHMET, H. Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury. J Cereb Blood Flow Metab 27: 1022-32, 2007.
PUTCHA, G. V., LE, S., FRANK, S., BESIRLI, C. G., CLARK, K., CHU, B., ALIX, S., YOULE, R. J., LAMARCHE, A., MARONEY, A. C. and JOHNSON, E. M., JR. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38: 899-914, 2003.
RIBO, M., MOLINA, C. A., DELGADO, P., RUBIERA, M., DELGADO-MEDEROS, R., ROVIRA, A., MUNUERA, J. and ALVAREZ-SABIN, J. Hyperglycemia during ischemia rapidly accelerates brain damage in stroke patients treated with tPA. J Cereb Blood Flow Metab, 2007.
RICE, J. E., 3RD, VANNUCCI, R. C. and BRIERLEY, J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9: 131-41, 1981.
RULAND, S., HUNG, E., RICHARDSON, D., MISRA, S. and GORELICK, P. B. Impact of obesity and the metabolic syndrome on risk factors in African American stroke survivors: a report from the AAASPS. Arch Neurol 62: 386-90, 2005.
SHANKARAN, S., LAPTOOK, A. R., EHRENKRANZ, R. A., TYSON, J. E., MCDONALD, S. A., DONOVAN, E. F., FANAROFF, A. A., POOLE, W. K., WRIGHT, L. L., HIGGINS, R. D., FINER, N. N., CARLO, W. A., DUARA, S., OH, W., COTTEN, C. M., STEVENSON, D. K., STOLL, B. J., LEMONS, J. A., GUILLET, R. and JOBE, A. H. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353: 1574-84, 2005.
SHANKS, N. and LIGHTMAN, S. L. The maternal-neonatal neuro-immune interface: are there long-term implications for inflammatory or stress-related disease? J Clin Invest 108: 1567-73, 2001.
SRINIVASAN, M., KATEWA, S. D., PALANIYAPPAN, A., PANDYA, J. D. and PATEL, M. S. Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab 291: E792-9, 2006.
SURKAN, P. J., HSIEH, C. C., JOHANSSON, A. L., DICKMAN, P. W. and CNATTINGIUS, S. Reasons for increasing trends in large for gestational age births. Obstet Gynecol 104: 720-6, 2004.
TRESCHER, W. H., LEHMAN, R. A. and VANNUCCI, R. C. The influence of growth retardation on perinatal hypoxic-ischemic brain damage. Early Hum Dev 21: 165-73, 1990.
VANNUCCI, R. C., BRUCKLACHER, R. M. and VANNUCCI, S. J. The effect of hyperglycemia on cerebral metabolism during hypoxia-ischemia in the immature rat. J Cereb Blood Flow Metab 16: 1026-33, 1996.
VOORHIES, T. M., RAWLINSON, D. and VANNUCCI, R. C. Glucose and perinatal hypoxic-ischemic brain damage in the rat. Neurology 36: 1115-8, 1986.
WANG, X., ZHU, C., QIU, L., HAGBERG, H., SANDBERG, M. and BLOMGREN, K. Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia. J Neurochem 86: 351-62, 2003.
WELBERG, L. A. and SECKL, J. R. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 13: 113-28, 2001.
WELLEN, K. E. and HOTAMISLIGIL, G. S. Inflammation, stress, and diabetes. J Clin Invest 115: 1111-9, 2005.
WIBERG, B., SUNDSTROM, J., ARNLOV, J., TERENT, A., VESSBY, B., ZETHELIUS, B. and LIND, L. Metabolic risk factors for stroke and transient ischemic attacks in middle-aged men: a community-based study with long-term follow-up. Stroke 37: 2898-903, 2006.
WYATT, J. S., GLUCKMAN, P. D., LIU, P. Y., AZZOPARDI, D., BALLARD, R., EDWARDS, A. D., FERRIERO, D. M., POLIN, R. A., ROBERTSON, C. M., THORESEN, M., WHITELAW, A. and GUNN, A. J. Determinants of outcomes after head cooling for neonatal encephalopathy. Pediatrics 119: 912-21, 2007.
YIN, W., SIGNORE, A. P., IWAI, M., CAO, G., GAO, Y., JOHNNIDES, M. J., HICKEY, R. W. and CHEN, J. Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke 38: 1017-24, 2007.
ZHU, C., XU, F., WANG, X., SHIBATA, M., UCHIYAMA, Y., BLOMGREN, K. and HAGBERG, H. Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 96: 1016-27, 2006.