簡易檢索 / 詳目顯示

研究生: 邱瓏
Chiu, Lung
論文名稱: 實驗上實現用於不可信量子網路中量子態斷層掃描的通訊波長四光子糾纏態
Experimental Realization of Telecommunication Wavelength Four-Photon Entanglement for Quantum State Tomography in Untrusted Quantum Networks
指導教授: 李哲明
Li, Che-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 124
中文關鍵詞: 量子斷層掃描量子網際網路設備無關量子資訊處理薩格納克干涉儀實驗通訊波長四體光子糾纏態
外文關鍵詞: Quantum state tomography, Quantum network, Device-independent quantum information processing, Sagnac interferometer, Experimental telecommunication wavelength four-photon entanglement
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在量子網路中量子資訊處理與量子計算的任務需要透過量子態斷層掃描精確地描述量子態。然而,在實際情況中量子態斷層掃描可能受到環境干擾或實驗不可避免的缺陷影響,導致設備變得不可信任,最糟的情況是其結果可以用古典物理來描述。為了實現在不可信設備中驗證量子態斷層掃描,本研究提出了理論方法與實驗驗證在設備無關下進行量子態斷層掃描。在理論方法中將古典過程模型引入量子斷層掃描,來判斷量子態斷層掃描是否喪失其量子特性。於實驗驗證中,本研究使用基於偏振糾纏薩格納克干涉儀的第二型自發參數下轉換光源生成高保真糾纏光子對,並利用所提出的基準方法評估在不可信設備的情況下驗證量子態斷層掃描的忠實性。更進一步,為了能將本研究提出的方法運用至多光子糾纏平台,並實際應用於量子網路,我們使用偏振糾纏薩格納克干涉儀製造兩對通訊波長1550奈米的糾纏光子,接著將這兩對糾纏光子干涉搭建出四光子糾纏的量子網路,並測得其下限保真度為0.7211 $pm$ 0.0304。這超過古典邊界 0.683,因此確認具備純四體光子糾纏態以及操控性。本研究所提出在不可信設備中驗證量子態斷層掃描的理論方法與實驗驗證,在未來可用於量子網路中。

    In quantum networks, quantum information processing and quantum computing tasks require quantum state tomography to characterize quantum states accurately. However, in reality, quantum state tomography can be disrupted by environmental interference or inevitable experimental imperfections, rendering the devices untrusted, with the worst case being that the results can be described by classical physics. To enable the verifying of quantum state tomography using untrusted devices, this study proposes a theoretical method and experimental validation for performing device-independent quantum state tomography. The theoretical approach introduced the classical process model concept to develop a tool to distinguish and quantify quantum processes. Using this tool, we can determine whether quantum state tomography has lost its quantum characteristics. In the experimental verification, a high-fidelity entangled photon pair is generated using a Sagnac-based type-II polarization entanglement spontaneous parametric down-conversion source to assess whether quantum state tomography is faithfully executed in the presence of untrusted devices using the proposed benchmark method. Furthermore, to extend the proposed method of this study to multi-photon entanglement platforms and practical applications in quantum networks, we utilized a polarization Sagnac interferometer to generate two pairs of entangled photons in the telecommunications wavelength of 1550 nm. These two pairs of entangled photons were then fused to construct four-photon entanglement, with a measured lower bound fidelity of 0.7211 $pm$ 0.0304. This exceeds the classical bound of 0.683, confirming genuine four-photon entanglement and quantum steering. The theoretical method and experimental validation proposed in this study for verifying quantum state tomography using untrusted devices can be applied to quantum networks in the future.

    摘要 i Abstract ii 誌謝 iv Table of Contents vi List of Tables ix List of Figures x Nomenclature xii Chapter 1. Introduction 1 1.1. Background 1 1.2. Motivation 6 1.3. Purpose 7 1.4. Outline 8 Chapter 2. Protocol for device-independence quantum state tomography 11 2.1. Quantum state tomography 12 2.2. Classical process model 14 2.3. Classical model in quantum state tomography 19 2.3.1. Ideal case for a single node 21 2.3.2. Ideal case for two nodes 21 2.4. Quantifiers for nonclassical processes in quantum state tomography 22 Chapter 3. Quantum state tomography using untrusted devices 27 3.1. Experimental implementation of a polarization Sagnac interferometer 27 3.1.1. Spontaneous parametric down-conversion 27 3.1.2. Quasi-phase matching 30 3.1.3. Experimental setup 32 3.1.4. Nonlocality tests and state fidelity 37 3.2. Quantum state tomography using untrusted devices 40 3.2.1. Experimental procedure 40 3.2.2. Experimental results 44 3.2.3. Discussion 50 Chapter 4. Experimental realization of four-photon entanglement for quantum networks 52 4.1. Scheme for generating four-photon entanglement 52 4.1.1. Type-II polarization-entangled SPDC source 53 4.1.2. Quantum interference and operator 53 4.1.3. Timestamp analysis of pulse laser and single photon signals 57 4.1.4. Multi-photon pair contribution in SPDC 59 4.2. Experimental realization of four-photon interference 69 4.3. Analysis and discussion of indistinguishability 76 4.3.1. Enhancing indistinguishability with fiber link 78 4.3.2. Photon frequency consistency check using bandpass filter fiber 82 4.3.3. Detection efficiency 84 4.4. Experimental optimization and realization of four-photon indistinguishability 89 4.5. Outlook on fidelity improvement 92 Chapter 5. Summary and Outlook 95 5.1. Summary 95 5.2. Outlook 96 References 98 Appendix A. Analysis of multi-photon pair contribution in SPDC within four-photon entanglement 108

    [1] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.
    [2] M. F. Riedel, D. Binosi, R. Thew, and T. Calarco, “The european quantum technologies flagship programme,” Quantum Science and Technology, vol. 2, no. 3, p. 030501, 2017.
    [3] A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr, M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A. Wallraff, I. Walmsley, and F. K. Wilhelm, “The quantum technologies roadmap: a european community view,” New Journal of Physics, vol. 20, no. 8, p. 080201, 2018.
    [4] M. Riedel, M. Kovacs, P. Zoller, J. Mlynek, and T. Calarco, “Europe's quantum flagship initiative,” Quantum Science and Technology, vol. 4, no. 2, p. 020501, 2019.
    [5] J. Medford, J. Beil, J. Taylor, S. Bartlett, A. Doherty, E. Rashba, D. DiVincenzo, H. Lu, A. Gossard, and C. M. Marcus, “Self-consistent measurement and state tomography of an exchange-only spin qubit,” Nature nanotechnology, vol. 8, no. 9, pp. 654–659, 2013.
    [6] R. P. Feynman, “Simulating physics with computers,” in Feynman and computation, pp. 133–153, CRC Press, 2018.
    [7] A. Steane, “Quantum computing,” Reports on Progress in Physics, vol. 61, no. 2, p. 117, 1998.
    [8] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010.
    [9] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Physical Review Letters, vol. 70, no. 13, p. 1895, 1993.
    [10] Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. J. Briegel, and J.-W. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature, vol. 430, no. 6995, pp. 54–58, 2004.
    [11] Y.-H. Luo, H.-S. Zhong, M. Erhard, X.-L. Wang, L.-C. Peng, M. Krenn, X. Jiang, L. Li, N.-L. Liu, C.-Y. Lu, et al., “Quantum teleportation in high dimensions,” Physical Review Letters, vol. 123, no. 7, p. 070505, 2019.
    [12] X.-M. Hu, C. Zhang, B.-H. Liu, Y. Cai, X.-J. Ye, Y. Guo, W.-B. Xing, C.-X. Huang, Y.-F. Huang, C.-F. Li, et al., “Experimental high-dimensional quantum teleportation,” Physical Review Letters, vol. 125, no. 23, p. 230501, 2020.
    [13] M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Physical Review A, vol. 59, no. 3, p. 1829, 1999.
    [14] D. Markham and B. C. Sanders, “Erratum: Graph states for quantum secret sharing [phys. rev. a 78, 042309 (2008)],” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 83, no. 1, p. 019901, 2011.
    [15] B. Bell, D. Markham, D. Herrera-Martí, A. Marin, W. Wadsworth, J. Rarity, and M. Tame, “Experimental demonstration of graph-state quantum secret sharing,” Nature Communications, vol. 5, no. 1, pp. 1–12, 2014.
    [16] Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Physical Review Letters, vol. 95, no. 20, p. 200502, 2005.
    [17] D. Gottesman, *Stabilizer codes and quantum error correction*. California Institute of Technology, 1997.
    [18] D. Schlingemann and R. F. Werner, “Quantum error-correcting codes associated with graphs,” Physical Review A, vol. 65, no. 1, p. 012308, 2001.
    [19] D. Schlingemann, “Stabilizer codes can be realized as graph codes,” arXiv preprint quant-ph/0111080, 2001.
    [20] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, et al., “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science, vol. 351, no. 6278, pp. 1176–1180, 2016.
    [21] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review Letters, vol. 86, no. 22, p. 5188, 2001.
    [22] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, “Measurement-based quantum computation,” Nature Physics, vol. 5, no. 1, pp. 19–26, 2009.
    [23] V. Danos and E. Kashefi, “Determinism in the one-way model,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 74, no. 5, p. 052310, 2006.
    [24] D. E. Browne, E. Kashefi, M. Mhalla, and S. Perdrix, “Generalized flow and determinism in measurement-based quantum computation,” New Journal of Physics, vol. 9, no. 8, p. 250, 2007.
    [25] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” in *2009 50th Annual IEEE Symposium on Foundations of Computer Science*, pp. 517–526, IEEE, 2009.
    [26] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science, vol. 335, no. 6066, pp. 303–308, 2012.
    [27] T. Morimae and K. Fujii, “Blind quantum computation protocol in which Alice only makes measurements,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 87, no. 5, p. 050301, 2013.
    [28] C. Greganti, M.-C. Roehsner, S. Barz, T. Morimae, and P. Walther, “Demonstration of measurement-only blind quantum computing,” New Journal of Physics, vol. 18, no. 1, p. 013020, 2016.
    [29] H. Häffner, W. Hänsel, C. Roos, J. Benhelm, D. Chek-al Kar, M. Chwalla, T. Körber, U. Rapol, M. Riebe, P. Schmidt, et al., “Scalable multiparticle entanglement of trapped ions,” Nature, vol. 438, no. 7068, pp. 643–646, 2005.
    [30] H. Rutbeck-Goldman, P. Haas, D. Hucul, Z. Smith, M. Macalik, J. Phillips, J. Williams, C. Woodford, B. Tabakov, and K.-A. Brickman-Soderberg, “Generating Greenberger-Horne-Zeilinger states in remote trapped ions,” in *APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts*, vol. 2020, pp. K01–084, 2020.
    [31] D. J. Wineland, D. Leibfried, M. D. Barrett, A. Ben-Kish, J. C. Bergquist, R. Blakestad, J. J. Bollinger, J. Britton, J. Chiaverini, B. DeMarco, et al., “Quantum control, quantum information processing, and quantum-limited metrology with trapped ions,” in *Laser Spectroscopy*, pp. 393–402, World Scientific, 2005.
    [32] Y.-L. Shi, F. Mei, Y.-F. Yu, X.-L. Feng, and Z.-M. Zhang, “Generation of a genuine four-particle entangled state of trap ions,” Quantum Information Processing, vol. 11, pp. 229–234, 2012.
    [33] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature, vol. 425, no. 6961, pp. 937–940, 2003.
    [34] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, et al., “Creation of a six-atom ‘Schrödinger cat’ state,” Nature, vol. 438, no. 7068, pp. 639–642, 2005.
    [35] Y. Zhao, R. Zhang, W. Chen, X.-B. Wang, and J. Hu, “Creation of Greenberger-Horne-Zeilinger states with thousands of atoms by entanglement amplification,” NPJ Quantum Information, vol. 7, no. 1, p. 24, 2021.
    [36] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y. Wu, Q. Zhu, Y. Zhao, S. Li, S. Guo, et al., “Quantum walks on a programmable two-dimensional 62-qubit superconducting processor,” Science, vol. 372, no. 6545, pp. 948–952, 2021.
    [37] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, et al., “Strong quantum computational advantage using a superconducting quantum processor,” Physical Review Letters, vol. 127, no. 18, p. 180501, 2021.
    [38] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied Physics Reviews, vol. 6, no. 2, 2019.
    [39] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa, et al., “Demonstration of quantum volume 64 on a superconducting quantum computing system,” Quantum Science and Technology, vol. 6, no. 2, p. 025020, 2021.
    [40] J. M. Chow, J. M. Gambetta, E. Magesan, D. W. Abraham, A. W. Cross, B. R. Johnson, N. A. Masluk, C. A. Ryan, J. A. Smolin, S. J. Srinivasan, et al., “Implementing a strand of a scalable fault-tolerant quantum computing fabric,” Nature Communications, vol. 5, no. 1, p. 4015, 2014.
    [41] C.-P. Yang, Q.-P. Su, S.-B. Zheng, and F. Nori, “Entangling superconducting qubits in a multi-cavity system,” New Journal of Physics, vol. 18, no. 1, p. 013025, 2016.
    [42] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Physical Review Letters, vol. 86, no. 20, p. 4435, 2001.
    [43] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Żukowski, and J.-W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Physical Review Letters, vol. 91, no. 18, p. 180401, 2003.
    [44] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics, vol. 3, no. 2, pp. 91–95, 2007.
    [45] X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nature Photonics, vol. 6, no. 4, pp. 225–228, 2012.
    [46] X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, et al., “Experimental ten-photon entanglement,” Physical Review Letters, vol. 117, no. 21, p. 210502, 2016.
    [47] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nature Photonics, vol. 10, no. 4, pp. 248–252, 2016.
    [48] L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, et al., “Observation of ten-photon entanglement using thin BiB₃O₆ crystals,” Optica, vol. 4, no. 1, pp. 77–83, 2017.
    [49] H.-S. Zhong, Y. Li, W. Li, L.-C. Peng, Z.-E. Su, Y. Hu, Y.-M. He, X. Ding, W. Zhang, H. Li, et al., “12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Physical Review Letters, vol. 121, no. 25, p. 250505, 2018.
    [50] D. Wu, Q. Zhao, X.-M. Gu, H.-S. Zhong, Y. Zhou, L.-C. Peng, J. Qin, Y.-H. Luo, K. Chen, L. Li, et al., “Robust self-testing of multiparticle entanglement,” Physical Review Letters, vol. 127, no. 23, p. 230503, 2021.
    [51] C. Couteau, “Spontaneous parametric down-conversion,” Contemporary Physics, vol. 59, no. 3, pp. 291–304, 2018.
    [52] R. W. Boyd, A. L. Gaeta, and E. Giese, “Nonlinear optics,” in *Springer Handbook of Atomic, Molecular, and Optical Physics*, pp. 1097–1110, Springer, 2008.
    [53] P. Lambropoulos and D. Petrosyan, *Fundamentals of Quantum Information*. Springer, 2007.
    [54] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, no. 24, p. 4337, 1995.
    [55] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “Generation of correlated photon pairs in type-II parametric down conversion—revisited,” Journal of Modern Optics, vol. 48, no. 13, pp. 1997–2007, 2001.
    [56] Y. Shih, “Entangled biphoton source-property and preparation,” Reports on Progress in Physics, vol. 66, no. 6, p. 1009, 2003.
    [57] V. L. Tassev and S. R. Vangala, “Thick hydride vapor phase heteroepitaxy: A novel approach to growth of nonlinear optical materials,” Crystals, vol. 9, no. 8, p. 393, 2019.
    [58] M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE Journal of Quantum Electronics, vol. 28, no. 11, pp. 2631–2654, 1992.
    [59] X. Hu, P. Xu, and S. Zhu, “Engineered quasi-phase-matching for laser techniques,” Photonics Research, vol. 1, no. 4, pp. 171–185, 2013.
    [60] U. Leonhardt, *Measuring the quantum state of light*, vol. 22. Cambridge University Press, 1997.
    [61] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge University Press, 2010.
    [62] D. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Physical Review Letters, vol. 70, no. 9, p. 1244, 1993.
    [63] D. Leibfried, D. Meekhof, B. King, C. Monroe, W. M. Itano, and D. J. Wineland, “Determination of the motional quantum state of a trapped atom,” Physical Review Letters, vol. 77, no. 21, p. 4281, 1996.
    [64] K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Physical Review A, vol. 40, no. 5, p. 2847, 1989.
    [65] D. Mayers and A. Yao, “Quantum cryptography with imperfect apparatus,” in *Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280)*, pp. 503–509, IEEE, 1998.
    [66] D. Mayers and A. Yao, “Self testing quantum apparatus,” arXiv preprint quant-ph/0307205, 2003.
    [67] S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, et al., “Random numbers certified by Bell's theorem,” Nature, vol. 464, no. 7291, pp. 1021–1024, 2010.
    [68] Y.-Q. Nie, J.-Y. Guan, H. Zhou, Q. Zhang, X. Ma, J. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum random-number generation,” Physical Review A, vol. 94, no. 6, p. 060301, 2016.
    [69] Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W. Zhang, W.-Z. Liu, C. Wu, X. Yuan, et al., “Device-independent quantum random-number generation,” Nature, vol. 562, no. 7728, pp. 548–551, 2018.
    [70] J. F. Fitzsimons and E. Kashefi, “Unconditionally verifiable blind quantum computation,” Physical Review A, vol. 96, no. 1, p. 012303, 2017.
    [71] M. Hajdušek, C. A. Pérez-Delgado, and J. F. Fitzsimons, “Device-independent verifiable blind quantum computation,” arXiv preprint arXiv:1502.02563, 2015.
    [72] A. Gheorghiu, E. Kashefi, and P. Wallden, “Robustness and device independence of verifiable blind quantum computing,” New Journal of Physics, vol. 17, no. 8, p. 083040, 2015.
    [73] H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Physical Review Letters, vol. 108, no. 13, p. 130503, 2012.
    [74] U. Vazirani and T. Vidick, “Fully device-independent quantum key distribution,” Communications of the ACM, vol. 62, no. 4, pp. 133–133, 2019.
    [75] M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 84, no. 1, p. 010302, 2011.
    [76] I. Roth, J. Wilkens, D. Hangleiter, and J. Eisert, “Semi-device-dependent blind quantum tomography,” Quantum, vol. 7, p. 1053, 2023.
    [77] D. Mogilevtsev, J. Řeháček, and Z. Hradil, “Self-calibration for self-consistent tomography,” New Journal of Physics, vol. 14, no. 9, p. 095001, 2012.
    [78] J. Y. Sim, J. Shang, H. K. Ng, and B.-G. Englert, “Proper error bars for self-calibrating quantum tomography,” Physical Review A, vol. 100, no. 2, p. 022333, 2019.
    [79] A. M. Brańczyk, D. H. Mahler, L. A. Rozema, A. Darabi, A. M. Steinberg, and D. F. James, “Self-calibrating quantum state tomography,” New Journal of Physics, vol. 14, no. 8, p. 085003, 2012.
    [80] C. Stark, “Self-consistent tomography of the state-measurement Gram matrix,” Physical Review A, vol. 89, no. 5, p. 052109, 2014.
    [81] P. Cerfontaine, R. Otten, and H. Bluhm, “Self-consistent calibration of quantum-gate sets,” Physical Review Applied, vol. 13, no. 4, p. 044071, 2020.
    [82] Y.-C. Liang, T. Vértesi, and N. Brunner, “Semi-device-independent bounds on entanglement,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 83, no. 2, p. 022108, 2011.
    [83] H.-W. Li, Z.-Q. Yin, Y.-C. Wu, X.-B. Zou, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Semi-device-independent random-number expansion without entanglement,”Physical Review A—Atomic, Molecular, and Optical Physics, vol. 84, no. 3, p. 034301, 2011.
    [84] H.-W. Li, M. Pawłowski, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, “Semi-device-independent randomness certification using n→1 quantum random access codes,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 85, no. 5, p. 052308, 2012.
    [85] I. Šupić and J. Bowles, “Self-testing of quantum systems: A review,” Quantum, vol. 4, p. 337, 2020.
    [86] K.-S. Chen, G. N. M. Tabia, C. Jebarathinam, S. Mal, J.-Y. Wu, and Y.-C. Liang, “Quantum correlations on the no-signaling boundary: Self-testing and more,” Quantum, vol. 7, p. 1054, 2023.
    [87] K. F. Pál, T. Vértesi, and M. Navascués, “Device-independent tomography of multipartite quantum states,” Physical Review A, vol. 90, no. 4, 2014.
    [88] T. H. Yang, T. Vértesi, J.-D. Bancal, V. Scarani, and M. Navascués, “Robust and versatile black-box certification of quantum devices,” Physical Review Letters, vol. 113, no. 4, p. 040401, 2014.
    [89] A. Gočanin, I. Šupić, and B. Dakić, “Sample-efficient device-independent quantum state verification and certification,” PRX Quantum, vol. 3, no. 1, 2022.
    [90] T. Kim, M. Fiorentino, and F. N. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 73, no. 1, p. 012316, 2006.
    [91] A. Motazedifard, S. A. Madani, J. J. Dashkasan, and N. S. Vayaghan, “Nonlocal realism tests and quantum state tomography in Sagnac-based Type-II polarization-entanglement SPDC-source,” Heliyon, vol. 7, no. 6, 2021.
    [92] J.-W. Pan and A. Zeilinger, “Greenberger-Horne-Zeilinger-state analyzer,” Physical Review A, vol. 57, no. 3, p. 2208, 1998.
    [93] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, no. 2, pp. 777–838, 2012.
    [94] C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Physical Review Letters, vol. 59, no. 18, p. 2044, 1987.
    [95] S.-H. Chen, H. Lu, Q.-C. Sun, Q. Zhang, Y.-A. Chen, and C.-M. Li, “Discriminating quantum correlations with networking quantum teleportation,” Physical Review Research, vol. 2, no. 1, p. 013043, 2020.
    [96] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Physical Review Letters, vol. 23, no. 15, p. 880, 1969.
    [97] J. F. Clauser and M. A. Horne, “Experimental consequences of objective local theories,” Physical Review D, vol. 10, no. 2, p. 526, 1974.
    [98] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nature Photonics, vol. 9, no. 10, pp. 641–652, 2015.
    [99] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature, vol. 434, no. 7030, pp. 169–176, 2005.
    [100] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–2467, 1997.
    [101] J. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: The two-bit quantum gate,” Physical Review Letters, vol. 78, no. 2, p. 390, 1997.
    [102] J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics Physique Fizika, vol. 1, no. 3, p. 195, 1964.
    [103] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Physical Review Letters, vol. 87, no. 7, p. 077902, 2001.
    [104] B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, et al., “Quantum discord as resource for remote state preparation,” Nature Physics, vol. 8, no. 9, pp. 666–670, 2012.
    [105] K.-C. Toh, M. Todd, and R. Tutuncu, “SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming,” URL: http://www.math.nus.edu.sg/~mattohkc/sdpt3.html, 2007.
    [106] R. H. Tütüncü, K.-C. Toh, and M. J. Todd, “SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming, version 3.0,” Web page http://www.math.nus.edu.sg/mattohkc/sdpt3.html, 2001.
    [107] M. H. Rubin, D. N. Klyshko, Y. Shih, and A. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Physical Review A, vol. 50, no. 6, p. 5122, 1994.
    [108] T. B. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Physical Review A, vol. 52, no. 5, p. R3429, 1995.
    [109] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Physical Review A, vol. 60, no. 2, p. R773, 1999.
    [110] A. Yariv and P. Yeh, *Optical waves in crystal propagation and control of laser radiation*, 1983.
    [111] C. Hsu, “Photonic dynamics and entangled photon source: From identification of experimental non-Markovian dynamics to generation of polarization-entangled photon source based on Sagnac interferometer,” National Cheng Kung University, 2022.
    [112] B.-Y. Lee, “Experimental photonic quantum tomography using untrusted devices,” National Cheng Kung University, 2022.
    [113] UQDevices, “Logic 16,” https://uqdevices.com/products/.
    [114] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Physical Review, vol. 47, no. 10, p. 777, 1935.
    [115] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Physical Review Letters, vol. 113, no. 14, p. 140401, 2014.
    [116] J.-W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature, vol. 410, no. 6832, pp. 1067–1070, 2001.
    [117] R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of an ultra-bright single-photon source using superconducting nanowire single-photon detectors,” Optics Communications, vol. 336, pp. 47–54, 2015.
    [118] T. Faleo, E. Brunner, J. W. Webb, A. Pickston, J. Ho, G. Weihs, A. Buchleitner, C. Dittel, G. Dufour, A. Fedrizzi, et al., “Entanglement-induced collective many-body interference,” Science Advances, vol. 10, no. 35, p. eadp9030, 2024.
    [119] S.-Y. Sun, “Experimental capability of photon interference for generating six-photon entanglement,” National Cheng Kung University, 2023.
    [120] I. Quantique, “Id1000,” https://www.idquantique.com/quantum-detection-systems/products/id1000-time-controller/.
    [121] S. Sempere-Llagostera, G. Thekkadath, R. Patel, W. Kolthammer, and I. Walmsley, “Reducing ( g^{(2)}(0) ) of a parametric down-conversion source via photon-number resolution with superconducting nanowire detectors,” Optics Express, vol. 30, no. 2, pp. 3138–3147, 2022.
    [122] I. Quantique, “Idqube,” https://www.idquantique.com/quantum-detection-systems/products/id-qube-nir-gated/.
    [123] R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photonics, vol. 3, no. 12, pp. 696–705, 2009.
    [124] M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling photons radiated by independent pulsed sources,” Annals of the New York Academy of Sciences, vol. 755, no. 1, pp. 91–102, 1995.
    [125] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.
    [126] B. E. Zhu and L. Qian, “Coincidence detection with free-running ID220 detectors application note,” URL: https://reurl.cc/aZVLgQ, 2012.
    [127] I. Quantique, “Id281,” https://www.idquantique.com/quantum-detection-systems/the-id281-series/.
    [128] Thorlabs, “https://www.thorlabs.com/thorproduct.cfm?partnumber=mpc320,”
    [129] O. Gühne and G. Tóth, “Entanglement detection,” Physics Reports, vol. 474, no. 1-6, pp. 1–75, 2009.
    [130] B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New Journal of Physics, vol. 14, no. 2, p. 023021, 2012.
    [131] W.-T. Kao, C.-Y. Huang, T.-J. Tsai, S.-H. Chen, S.-Y. Sun, Y.-C. Li, T.-L. Liao, C.-S. Chuu, H. Lu, and C.-M. Li, “Scalable determination of multipartite entanglement in quantum networks,” npj Quantum Information, vol. 10, no. 1, p. 73, 2024.
    [132] C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Physical Review Letters, vol. 115, no. 1, p. 010402, 2015.

    無法下載圖示 校內:2027-01-31公開
    校外:2027-01-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE