簡易檢索 / 詳目顯示

研究生: 陳育聖
Chen, Yu-Sheng
論文名稱: 建構智慧型紅外光生理參數量測系統於腦傷病患之監控
Development of a Smart Infrared System for Physiological Monitoring in Brain Injury
指導教授: 陳天送
Chen, Tain-Song
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 腦中風血氧濃度調變微控制器
外文關鍵詞: Cerebrovascular attack (CVA), Oxyhemoglobin saturation (SpO2), Modulation, Microcontroller (PIC24F)
相關次數: 點閱:68下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於腦血管疾病所造成的腦部傷害為台灣主要死因,其中腦部外傷是造成腦部傷害的重要原因之一,而腦部創傷常引發感染,進而導致發燒。有鑑於此,本研究的主要目的為利用紅外光技術建構一套以長時間核心溫與血氧濃度為基礎的非侵入式生理參數量測系統,並利用此系統實際量測長期臥床腦中風患者生理參數狀態,並結合智慧型手機作長時間監測,作為快速診斷評估與居家照護的工具。本系統主要架構可分為兩個部份:第一部份為核心溫度部份,利用非侵入式偵測耳膜紅外光訊號,並利用數位補償方式減少環境溫度的影響;第二部份為血氧濃度部份,利用調變方式交替發射發光電路,二大部分皆整合於微控制器(PIC24F),並透過藍芽模組,將生理訊號傳送到智慧型手機上。智慧型手機的即時訊號顯示、儲存的生理參數變化,並在參數持續異常時,經由手機撥號或簡訊緊急通知醫護人員,以達到即時救護的功能。最後將本系統與護理中心進行量測合作,實際量測腦中風患者核心溫度和耳垂血氧濃度,並與正常受測者作比較,結果也顯示本研究所開發的紅外光技術量測系統可作為腦傷害患者的長期監控與居家照護工具。

    Cerebrovascular attack (CVA) has been a common symptom in many brain injury diseases. And brain injury is often caused by infection, leading to fever. The aim of this study is to develop a long-term physiological monitoring system in brain injury. Physiological parameters include core temperature and (SpO2) which are monitored.
    The system architecture can be divided into two main parts: The first part is core temperature, using infrared techniques to detect eardrum’s temperature. A digital compensation method is used to overcome the effect of ambient temperature. The second part is arterial oxyhemoglobin saturation (SpO2), using modulation to design the emitter circuit. The two parts all are integrated in microcontroller (PIC24F) to acquire the physiological signals and then transmit them to the smart phone with Bluetooth wireless technology. The acquired signals and waveform are displayed in real time on a screen and saved for further analysis. Furthermore, when the physiological signal is abnormal, this smart phone will send a warning phone call or message to medical personnel automatically. Finally, the system is performed the nursing home to check system validity. The results also indicated that the infrared-based measurement system in this study could be a tool for long-term monitoring at the nursing home or home-care.

    摘要 I Abstract II 誌謝 III 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻探討與回顧 6 1.3.1 腦部傷害的病理機制與影響功能 6 1.3.2 人體適應環境的體溫調節機制 8 1.3.3 核心溫度應用在微循環研究的進展 9 1.3.4 光體積變化描述波形應用在微循環研究的進展 10 1.3.5 血氧飽和濃度應用在微循環研究的進展 13 1.4 論文架構 13 第二章 生理訊號量測與原理 14 2.1 微循環簡介 14 2.2 皮膚組織的光學特性 15 2.3 光體積變化描述波形概論 17 2.4 血氧飽和濃度推導計算 18 第三章 系統設計 23 3.1 核心溫紅外光量測電路 24 3.1.1 熱電堆與主動電極 24 3.1.2 核心溫電路設計 27 3.1.3 長時間環境溫度補償 30 3.2 光學量測電路 34 3.2.1 發光二極體和光偵測器 34 3.2.2 光偵測器和血氧濃度類比電路 35 3.3 微控制器 37 3.3.1 發射端電路控制 38 3.3.2 微處理器類比至數位轉換模組 41 3.3.3 通用非同步收發傳輸模組 42 3.4 智慧型手機 43 3.4.1 智慧型手機開發軟體簡介 44 3.5 使用者介面 45 第四章 結果與討論 48 4.1 核心溫度量測系統 48 4.2 紅外線黑體校正 49 4.3 硬體系統 51 4.4 實際量測 52 第五章 結論與未來展望 60 5.1 結論 60 5.2 未來展望 60 參考文獻 62

    [1]"http://www.doh.gov.tw/,"行政院衛生署,死因統計,主要死因死亡率。
    [2]E. F. J. Ring, "The historical development of temperature measurement in
    medicine," Infrared Physics & Technology, Vol. 49, pp.297-301, 2007.
    [3]E. P. Widmaier, H. Raff, and K. T. Strang, "Vander’s human physiology," 11 ed: McGraw-Hill Companies, Inc., 2010.
    [4]P. R. Cooper, "Head Injury," 3 ed: ,Williams & Wilkins, Inc., 1982.
    [5]F. Cascetta, "An evaluation of the performance of an infrared tympanic thermometer," Measurement, Vol. 16, pp. 239-246, 1995.
    [6]K. W. Chan, K. Hung and Y. T. Zhang, "Noninvasive and cuffless measurements of blood pressure for telemedicine," presented at Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE, 2001.
    [7]C. F. Tsai and M. S. Young, "Pyroelectric infrared sensor-based thermometer for monitoring indoor objects," Review of Scientific Instruments, Vol. 74, pp.5267-5273, 2003.
    [8]K. Keranen, J. T. Makinen, P. Korhonen, E. Juntunen, V.Heikkinen, J. Makela, "Infrared temperature sensor system for mobile devices," Sensor and Actuators A, Vol. 157, p.p. 161-167, 2010.
    [9]A. B. Hertzman, "Photoelectric plethysmography of the nasal septumin man," Proc. Soc. Exp. Biol. Med., Vol. 37, pp. 529-542, 1937.
    [10]A. B. Hertzman, "Photoelectric plethysmography of the fingers and toes in man," Proc. Soc. Exp. Biol. Med., Vol. 37, pp. 529-542, 1937.
    [11]S. A. Carter and R. B. Tate, "Value of toe pulse waves in addition to systolic pressures in the assessment of the severity of peripheral arterial disease and critical limb ischemia," J Vasc Surg, Vol. 24, pp. 258-65, 1996.
    [12]J. Allen and A. Murray, "Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites," Physiol Meas, Vol. 14, pp. 298-307, 2003.
    [13]J. Allen, C. P. Oates, T. A. Lees, and A. Murray, "Photoplethysmography detection of lower limb peripheral arterial occlusive disease: a comparison of pulse timing, amplitude and shape characteristics," Physiological Measurement, Vol. 26, pp. 811-821, 2005.
    [14]J. Allen, K. Overbeck, G. Stansby, and A. Murray, "Photoplethysmography assessments in cardiovascular disease," Measurement & Control, Vol. 39, pp. 80-83, 2006.
    [15]J. Allen, K. Overbeck, A. F. Nath, A. Murray, and G. Stansby, "A prospective comparison of bilateral photoplethysmography versus the ankle-brachial pressure index for detecting and quantifying lower limb peripheral arterial disease," J Vasc Surg, Vol. 47, pp. 794-802, 2008.
    [16]M. Z. Poh, N. C. Swenson ,and R.W. Picard, "Motion-tolerant magnetic earring sensor and wireless earpiece for wearable photoplenthysmography," IEEE Trans Biomed Eng, Vol. 14, 2010.
    [17]W. JG, "Design of pulse oximeters," IOP,1997.
    [18]W. F. Ganong,醫學生理學,第七版,合記圖書出版社,1997.
    [19]Y. S. Chou, "Studies of The Optical Characteristics of Skin Tissue Using Monte Carlo Simulation," MS thesis, Chung-Yuan Christian Univ, 2003.
    [20]P. A. Kyriacou, "Pulse oximetry in the oesophagus," Physiol Meas, Vol. 27, pp. 1-35, 2006.
    [21]D. M. M. Hassan Deni1, Robert A Malkin2, "Development of a Pulse Oximeter Analyzer for the Developing World," Department of Biomedical Engineering, vol. Western New England College, 2005.
    [22]Y. Mendelson, "Pulse oximetry: theory and applications for noninvasive monitoring," Clin Chem, Vol. 38, pp. 1601-7, 1992.
    [23]J. P. de Kock, L. Tarassenko, C. J. Glynn, and A. R. Hill, "Reflectance pulse oximetry measurements from the retinal fundus," IEEE Trans Biomed Eng, Vol. 40, pp. 817-23, 1993.
    [24]Lawrence A. Klein, Millimeter-Wave and Infrared Multisensor Design and Signal Processing, Artech House, Inc. 1997.
    [25]"http://www.sensor-ic.com/," 10TP583T, Thermopile.
    [26]"http://www.eettaiwan.com/," Thermopile.
    [27]J. Allen, "Photoplethysmography and its application in clinical physiological measurement," Physiological Measurement, Vol. 23, pp. 1-39, 2007.
    [28]"http://www.microchip.com/," PIC24FJ256GB106 Data Sheet, Microchip, USA.
    [29]"http://tw.asus.com/," Mobile, Taiwan.
    [30]"http://www.hotech-tw.com/index.htm/," Model 330.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE