簡易檢索 / 詳目顯示

研究生: 蔡孟岑
Cai, Meng-Cen
論文名稱: 高精度無罩式曝光機技術對光學材料製程的影響
The Impact of High-Precision Maskless Lithography Technology on Optical Material Processing
指導教授: 謝孟達
Shieh, Meng-Dar
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系碩士在職專班
Department of Industrial Design (on-the-job training program)
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 65
中文關鍵詞: 高精度無罩式曝光機影像轉移技術光學材料光傳輸分析
外文關鍵詞: High-precision maskless exposure machine, lithography technology, optical material, optical transmission analysis
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract iii 誌謝 vii 目錄 ix 表目錄 xi 圖目錄 xii 第1章 緒論 1 1.1 前言 1 1.2 研究背景與動機 1 1.3 研究限制與研究目的 2 第2章 文獻探討 4 2.1 光傳輸材料的演進 4 2.2 影像轉移技術及其機構 5 2.2.1 光罩式影像轉移技術 5 2.2.2 無罩式影像轉移技術 7 第3章 研究方法與理論 11 3.1 光起始因子之運作 11 3.2 光的折射與全反射 11 3.3 分子擴散 12 3.4 實驗設計Design of experiment (DOE) 13 3.4.1 試誤法 (Trial and Error) 14 3.4.2 一次一因子實驗法 (One-Factor-at-a-Time, OFT) 14 3.4.3 全因子實驗法 (Full-Factorial Experiments, FFE) 14 3.4.4 田口式直交表實驗法 (Taguchi’s Orthogonal Arrays) 15 第4章 實驗步驟與結果討論 18 4.1 實驗步驟 18 4.1.1 影像轉移步驟 19 4.1.2 曝光劑量計算 20 4.1.3 堆疊步驟與方法 20 4.1.4 量測步驟與方法 22 4.2 商用曝光機最佳化 24 4.2.1 商用曝光機之曝光劑量測試 25 4.2.2 曝光劑量與光通道橫切面分析 26 4.3 NCKU自製曝光機最佳化 31 4.3.1 曝光劑量最佳化 31 4.3.2 曝光照度最佳化 31 4.3.3 載台之移動速度穩定性評估 33 4.3.4 高曝光照度下之曝光劑量最佳化 34 4.3.5 圖檔轉檔對光學效率之影響 38 4.3.6 光學傳輸結果於軟性電路基板上之再現性 40 第5章 結論 45 第6章 未來實驗規劃 47 參考文獻 48

    施敏 (2006)。半導體製程概論。台灣:國立陽明交通大學出版社。[Shi, M. Fundamentals of Semiconductor Fabrication. Taiwan, ROC: National Yang Ming Chiao Tung University Publishing Group.]
    許永昕 (2023)。利用斜掃描與頻閃技術之高精度無光罩式微影系統的開發與應用(已發表博士論文)。台南:國立成功大學機械工程學系。[Shiu, Y. S. (2010). Development and Application of a High Precision Maskless Lithography System Based on Oblique Scanning and Strobe Lighting Technology (Published Doctoral thesis). Tainan: Department of Mechanical Engineering, National Cheng Kung University, Taiwan, ROC.]
    Ando, Y., Arai, Y., Ishii, Y., & Koike, S. (2001). SMT-compatible optical-I/O chip packaging for chip-level optical interconnects. Paper session presented at the 51st Electronic Components and Technology Conference, Orlando, FL, USA. DOI: 10.1109/ECTC.2001.927895.
    Arndt, S., Ebling, F., N., Krabe, D., Lang, G., & Scheel, W. (2000). New technology for electrical/optical systems on module and board level: The EOCB approach. Paper session presented at the 50th Electronic Components and Technology Conference, Las Vegas, NV, USA. DOI: 10.1109/ECTC.2000.853285.
    Beals, J., Bamiedakis, N., Clapp, T., DeGroot, J., Penty, R., & White, I. (2007) Low loss and low crosstalk multimode polymer waveguide crossings for high-speed optical interconnects. Paper session presented at the Conference on Lasers and Electro-Optics, Seoul, Korea(South). DOI: 10.1109/CLEO.2007.4452523.
    Benner, A. F., Ignatowski, M., Kuchta, D. M., Kash, J. A., & Ritter, M. B. (2005). Exploitation of optical interconnects in future server architectures. IBM Journal of research and development, 49(4), 755-775. DOI: 10.1147/rd.494.0755.
    Chien, H.-L., Chiu, Y.-H., & Lee, Y.-C. (2021). Maskless lithography based on oblique scanning of point array with digital distortion correction. Optics and Lasers in Engineering,136. DOI:10.1016/j.optlaseng.2020.106313.
    Chan, K. F., Feng, Z., Ishikawa, A., Mei, W., & Yang, R. (2003). High-resolution maskless lithography. Journal of Micro/Nanolithography, MEMS and MOEMS, 2(4), 331-339. DOI:10.1117/1.1611182.
    Choki, K., Ishigure, T., Kinoshita R., & Moriya, K. (2013). Polymer optical waveguides with GI and W-shaped cores for high-bandwidth-density on-board interconnects. Journal of Lightwave Technology, 31(24), 4004-4015. DOI:10.1109/JLT.2013.2279791.
    Chen, R. T., & Kim, G. (1999). Three-dimensionally interconnected multi-bus-line bidirectional optical backplane. Optical Engineering, 38(9), 1560-1566. DOI:10.1117/1.602207.
    Dudley, D., Duncan, W. M., & Slaughter, J. (2003). Emerging digital micromirror device (DMD) applications. MOEMS display and imaging systems, 4985, 14-25. DOI: 10.1117/12.480761.
    Griese, E. (1999). Parallel optical interconnects for high performance printed circuit boards. Paper session presented at the 6th International Conference on Parallel Interconnects, Anchorage, AK, USA. DOI:10.1109/PI.1999.806410.
    Dangel, R., & et al. (2008). Polymer-waveguide-based board-level optical interconnect technology for datacom applications. IEEE Transactions on Advanced Packaging, 31(4), 759-767. DOI:10.1109/TADVP.2008.2005996.
    Gil, D., Menon, R., Patel, A., & Smith, H. I. (2005). Maskless lithography. Materials Today, 8(2), 26-33. DOI:10.1016/S1369-7021(05)00699-1.
    He, Z., Immonen, M., Liu, X., Ma, L., & Xu, X. (2022). Investigation on mode dispersion and lamination stability of multimode polymer waveguides for an optical backplane. Optics Express, 30(22), 40505-40514. DOI:10.1364/OE.472218.
    Hockham, G. A., & Kao, K. C. (1966). Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers, 113(7), 1151-1158. DOI:10.1049/PIEE.1966.0189.
    Hou, Y., Lin, J., & Zhou, X. (2015). A review on the processing accuracy of two-photon polymerization. AIP Advances, 5(3) 3-4. DOI:10.1063/1.4916886.
    Ishigure, T. et al. (2013). Low-loss design and fabrication of multimode polymer optical waveguide circuit with crossings for high-density optical PCB. Paper session presented at the 63rd Electronic Components and Technology Conference, Las Vegas, NV, USA. DOI:10.1109/ECTC.2013.6575587.
    Ishigure, T., & Morimoto, Y. (2016). Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors. Optics express, 24(4), 3550-3561. DOI:10.1364/OE.24.003550.
    Maxwell, J. C. (1865). A Dynamical Theory of the Electromagnetic Field. DOI:10.1098/RSTL.1865.0008.
    Miller, D. A. (1997). Physical reasons for optical interconnection. International Journal of Optoelectronics, 11, 155-168.
    Mizoguchi H. et al. (2018). High power LPP-EUV. Paper session presented at the China Semiconductor Technology International Conference, Shanghai, China. DOI:10.1109/CSTIC.2018.8369210.

    無法下載圖示 校內:2029-06-06公開
    校外:2029-06-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE