| 研究生: |
蔡孟岑 Cai, Meng-Cen |
|---|---|
| 論文名稱: |
高精度無罩式曝光機技術對光學材料製程的影響 The Impact of High-Precision Maskless Lithography Technology on Optical Material Processing |
| 指導教授: |
謝孟達
Shieh, Meng-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系碩士在職專班 Department of Industrial Design (on-the-job training program) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 高精度無罩式曝光機 、影像轉移技術 、光學材料 、光傳輸分析 |
| 外文關鍵詞: | High-precision maskless exposure machine, lithography technology, optical material, optical transmission analysis |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
施敏 (2006)。半導體製程概論。台灣:國立陽明交通大學出版社。[Shi, M. Fundamentals of Semiconductor Fabrication. Taiwan, ROC: National Yang Ming Chiao Tung University Publishing Group.]
許永昕 (2023)。利用斜掃描與頻閃技術之高精度無光罩式微影系統的開發與應用(已發表博士論文)。台南:國立成功大學機械工程學系。[Shiu, Y. S. (2010). Development and Application of a High Precision Maskless Lithography System Based on Oblique Scanning and Strobe Lighting Technology (Published Doctoral thesis). Tainan: Department of Mechanical Engineering, National Cheng Kung University, Taiwan, ROC.]
Ando, Y., Arai, Y., Ishii, Y., & Koike, S. (2001). SMT-compatible optical-I/O chip packaging for chip-level optical interconnects. Paper session presented at the 51st Electronic Components and Technology Conference, Orlando, FL, USA. DOI: 10.1109/ECTC.2001.927895.
Arndt, S., Ebling, F., N., Krabe, D., Lang, G., & Scheel, W. (2000). New technology for electrical/optical systems on module and board level: The EOCB approach. Paper session presented at the 50th Electronic Components and Technology Conference, Las Vegas, NV, USA. DOI: 10.1109/ECTC.2000.853285.
Beals, J., Bamiedakis, N., Clapp, T., DeGroot, J., Penty, R., & White, I. (2007) Low loss and low crosstalk multimode polymer waveguide crossings for high-speed optical interconnects. Paper session presented at the Conference on Lasers and Electro-Optics, Seoul, Korea(South). DOI: 10.1109/CLEO.2007.4452523.
Benner, A. F., Ignatowski, M., Kuchta, D. M., Kash, J. A., & Ritter, M. B. (2005). Exploitation of optical interconnects in future server architectures. IBM Journal of research and development, 49(4), 755-775. DOI: 10.1147/rd.494.0755.
Chien, H.-L., Chiu, Y.-H., & Lee, Y.-C. (2021). Maskless lithography based on oblique scanning of point array with digital distortion correction. Optics and Lasers in Engineering,136. DOI:10.1016/j.optlaseng.2020.106313.
Chan, K. F., Feng, Z., Ishikawa, A., Mei, W., & Yang, R. (2003). High-resolution maskless lithography. Journal of Micro/Nanolithography, MEMS and MOEMS, 2(4), 331-339. DOI:10.1117/1.1611182.
Choki, K., Ishigure, T., Kinoshita R., & Moriya, K. (2013). Polymer optical waveguides with GI and W-shaped cores for high-bandwidth-density on-board interconnects. Journal of Lightwave Technology, 31(24), 4004-4015. DOI:10.1109/JLT.2013.2279791.
Chen, R. T., & Kim, G. (1999). Three-dimensionally interconnected multi-bus-line bidirectional optical backplane. Optical Engineering, 38(9), 1560-1566. DOI:10.1117/1.602207.
Dudley, D., Duncan, W. M., & Slaughter, J. (2003). Emerging digital micromirror device (DMD) applications. MOEMS display and imaging systems, 4985, 14-25. DOI: 10.1117/12.480761.
Griese, E. (1999). Parallel optical interconnects for high performance printed circuit boards. Paper session presented at the 6th International Conference on Parallel Interconnects, Anchorage, AK, USA. DOI:10.1109/PI.1999.806410.
Dangel, R., & et al. (2008). Polymer-waveguide-based board-level optical interconnect technology for datacom applications. IEEE Transactions on Advanced Packaging, 31(4), 759-767. DOI:10.1109/TADVP.2008.2005996.
Gil, D., Menon, R., Patel, A., & Smith, H. I. (2005). Maskless lithography. Materials Today, 8(2), 26-33. DOI:10.1016/S1369-7021(05)00699-1.
He, Z., Immonen, M., Liu, X., Ma, L., & Xu, X. (2022). Investigation on mode dispersion and lamination stability of multimode polymer waveguides for an optical backplane. Optics Express, 30(22), 40505-40514. DOI:10.1364/OE.472218.
Hockham, G. A., & Kao, K. C. (1966). Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers, 113(7), 1151-1158. DOI:10.1049/PIEE.1966.0189.
Hou, Y., Lin, J., & Zhou, X. (2015). A review on the processing accuracy of two-photon polymerization. AIP Advances, 5(3) 3-4. DOI:10.1063/1.4916886.
Ishigure, T. et al. (2013). Low-loss design and fabrication of multimode polymer optical waveguide circuit with crossings for high-density optical PCB. Paper session presented at the 63rd Electronic Components and Technology Conference, Las Vegas, NV, USA. DOI:10.1109/ECTC.2013.6575587.
Ishigure, T., & Morimoto, Y. (2016). Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors. Optics express, 24(4), 3550-3561. DOI:10.1364/OE.24.003550.
Maxwell, J. C. (1865). A Dynamical Theory of the Electromagnetic Field. DOI:10.1098/RSTL.1865.0008.
Miller, D. A. (1997). Physical reasons for optical interconnection. International Journal of Optoelectronics, 11, 155-168.
Mizoguchi H. et al. (2018). High power LPP-EUV. Paper session presented at the China Semiconductor Technology International Conference, Shanghai, China. DOI:10.1109/CSTIC.2018.8369210.
校內:2029-06-06公開