| 研究生: |
陳寬庭 Chen, Kuan-Ting |
|---|---|
| 論文名稱: |
以錳摻雜形成中間能帶與表面電漿結構為特色之太陽能元件 GaN-based Solar Devices featuring Mn-related Intermediate Band and Surface Plasmon Structure |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 錳摻雜氮化鎵與氮化鋁鎵 、中間能帶 、太能能電池 、光電化學 、表面電漿 |
| 外文關鍵詞: | Mn-doped GaN and AlGaN, Intermediate band, Solar cell, Photoelectrochemical, Surface plasmon |
| 相關次數: | 點閱:114 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分為兩大部分。第一部分針對錳摻雜於氮化鎵與氮化鋁鎵雙層結構作為p-i-n太陽能電池之主動層進行光電特性的探討。利用穿透率量測、電致發光光譜及太陽能模擬量測太陽能電池相關參數,了解元件光電特性,並透過外部量子效應與各種結合雙雷射系統之量測,深入了解中間能帶的吸收特性與載子傳輸機制。
在AM1.5G太陽光模擬量測結果中,錳摻雜的試片光電流有顯著提升,使得元件光電轉換效率提升。而從外部量子效應量測,可以推斷光電流的增加,是因為中間能帶的形成,材料可以吸收額外長波段的光子所致。而從電致發光頻譜量測可於長波段觀察到額外的光訊號,推測確實有中間能帶的形成所造成的發光,利用其發光波長換算能階位置,與文獻對照相符合。
第二部分則是氮化鎵摻雜錳結合表面電漿子應用於光電化學系統產氫之研究。依據論文第一部分之研究,利用氮化鎵摻雜錳形成中間能帶作為半導體表面材料,增加額外長波段光子之吸收,並結合表面電漿共振,增加可見光波段的吸收,及散射現象,增加光電元件對於入射光的吸收。預期可以提升光電流,同時產生更多的氫氣。
從長時間光電化學產氫實驗可以發現具有表面電漿結構的試片,電流密度、氫氣產量、能量轉換效率與氫氣產率皆優於原試片。並利用濾光片,僅利用波長大於400nm的光能入射至工作電極,證實具有金屬銀奈米粒子結構之元件因光散射效應可增加光捕捉的能力,並於可見光波段有額外的吸收,有效提高光電流、提升效率。
This study is divided into two parts. In the first part, we focused on the optical and electrical characteristics of Mn-doped GaN and AlGaN as the absorption layers applied to the intermediate band solar cells. According to the transmittance spectrum, exhibited that the Mn-related band was formed within the forbidden band of GaN and AlGaN. Therefore, aside from absorbing the photons with the energy more than the bandgap of the material, the energy that higher than the difference between the intermediate band and the valence or conduction band could also be absorbed. At the result of the AM1.5G solar simulator indeed showed an obvious enhancement of the photocurrent density, as well as the energy conversion efficiency.
In order to verify the existence of the intermediate band, we utilized the measurement of the electroluminescent spectra and external quantum efficiency. And using the dual laser system to analyze its electron transfer mechanism.
On the other hand, Mn-doped GaN combined with surface plasmon structure applied to the photoelectrochemical system to produce the hydrogen is the second part of the study. The devices with surface plasmon structure could enhance the light trapping ability by scattering effect and adsorb the photons in visible light region result in the enhancement of the photocurrent density and the energy conversion efficiency. Furthermore, we designed the experiment by filtering the light whose wavelength is under 400nm to confirm the statement above.
[1] C. E. Fritts, “On a new form of selenium cell, and some electrical discoveries made by its use”, American Journal of Sociology, Vol. 26, pp. 465-472, 1883.
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, Vol. 25, pp. 676-677, 1954.
[3] M. B. Prince, “Silicon Solar Energy Converters”, Journal of Applied Physics, Vol. 26, pp. 534-540, 1955.
[4] Joseph J. Loferski, “Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion”, Journal of Applied Physics, Vol. 27, pp. 777-784, 1956.
[5] Joseph J. Wysocki, and Paul Rappaport, “Effect of Temperature on Photovoltaic Solar Energy Conversion”, Journal of Applied Physics, Vol. 31, pp. 571-578, 1960.
[6] William Shockley, and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, Journal of Applied Physics, Vol. 32, pp. 510-519, 1961.
[7] Sean E. Shaheen, David S. Ginley, and Ghassan E. Jabbour, “Organic-Based Photovoltaics: Toward Low-Cost Power Generation”, MRS Bulletin, Vol. 30, pp. 10-19, 2011.
[8] M. A. Green, Y. Hishikava, W. Warta, E. D. Dunlop, D. H. Levi, “Solar cell efficiency tables (Version 50)”. Progress in Photovoltaics: Research and Applications, Vol. 25, pp. 668-676, 2017.
[9] A. Luque, and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Physical Review Letters, Vol. 78, pp. 5014-5017, 1997.
[10] A. Marti, L. Cuadra, A. Luque, “Partial filling of a quantum dot intermediate band for solar cells”, IEEE Transactions on Electron Devices, Vol. 48, No. 10, pp. 2394-2399, 2001.
[11] A. Luque, A. Marti, and Colin Stanley, “Understanding intermediateband solar cells”, Nature Photonics, Vol. 6, pp. 146-152, 2012.
[12] A. Luque, and A. Marti, “The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept”, Advanced Materials, Vol. 22, Issue. 2, pp. 160-174, 2010.
[13] A. Martí, E. Antolín, E. Cánovas, “Elements of the design and analysis of quantum-dot intermediate band solar cells”, Thin Solid Films, Vol. 516, Issue. 20, pp. 6716-6722, 2008.
[14] J. Oleaa, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil, “Titanium doped silicon layers with very high concentration”, Journal of Applied Physics, Vol. 104, Issue. 1, pp. 016105, 2008.
[15] K. M. Yua, W. Walukiewicz, and J. W. Ager, “Multiband GaNAsP quaternary alloys”, Applied Physics Letters, Vol. 88, Issue. 9, pp. 092110, 2006.
[16] Weiming Wanga, Albert S. Lin, and Jamie D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O”, Applied Physics Letter, Vol. 95, Issue. 1, pp. 011103, 2009.
[17] N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Physical Review Letters, Vol. 106, pp. 028701, 2011.
[18] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Applied Physics Letter, Vol. 80, Issue. 10, pp. 1731, 2002.
[19] T. Graf, M. Gjukic, M. S. Brandt, and M. Stutzmann, “The Mn3+/2+ acceptor level in group III nitrides”, Applied Physics Letter, Vol. 81, Issue. 27, pp. 5159, 2003.
[20] A. Martí, C. Tablero, E. Antolín, A. Luque, “Potential of Mn doped In1−xGaxN for implementing intermediate band solar cells”, Solar Energy Materials and Solar Cells, Vol. 93, Issue. 5, pp. 641-644, 2009.
[21] 吳民耀,劉威志, “表面電漿子理論與模擬”, 物理雙月刊, 二十八卷二期, 4月,2006.
[22] 邱國斌,蔡定平, “金屬表面電漿簡介”, 物理雙月刊, 二十八卷二期, 4月,2006.
[23] R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films”, Physical Review Letters, Vol. 106, pp. 874-881, 2009.
[24] Anatoly V. Zayatsa, Igor I. Smolyaninovb, Alexei A. Maradudin, “Nano-optics ofsurface plasmon polaritons”, Physics Reports, Vol. 408, Issue. 3-4, pp. 131-314, 2005.
[25] Paras N. Prasad, “Nanophotonics”, Wiley-Interscience, United States of America, 2004.
[26] Craig F. Bohren, and Donald R. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley-VCH, New York, 1983.
[27] Linfang Qiao, Dan Wang, Lijian Zuo, Yuqian Ye, Jun Qian, Hongzheng Chen, Sailing He, “Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres”, Applied Energy, Vol. 88, Issue. 3, pp. 848-852, 2011.
[28] Cheng Yang, Gang Zhang, Hua Min Li and Won Jong Yoo, “Localized Surface Plasmon Resonances Caused by Ag Nanoparticles on SiN for Solar Cell Applications”, Journal of the Korean Physical Society, Vol. 56, Issue. 5, pp. 1488-1491, 2010.
[29] D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles”, Applied Physics Letters, Vol. 86, pp. 063106, 2005.
[30] Sang-Kyun Kim, Chang-Hee Cho, Baek-Hyun Kim, Yong-Seok Choi, Seong-Ju Park, Kimoon Lee, and Seongil Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors”, Applied Physics Letters, Vol. 94, pp. 183108, 2009.
[31] Xuefeng Gu, Teng Qiu, Wenjun Zhang, Paul K Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance”, Nanoscale Research Letters, 2011.
[32] Dong-Ming Yeh, Chi-Feng Huang, Cheng-Yen Chen, Yen-Cheng Lu and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode”, Nanotechnology, Vol. 19, No. 34, 2008.
[33] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Applied Physics Letters, Vol. 91, pp. 242502, 2007.
[34] Feng-Wen Huang, Jinn-Kong Sheu, Shang-Ju Tu, Po-Cheng Chen, Yu-Hsiang Yeh, Ming-Lun Lee, Wei-Chih Lai, Wen-Che Tsai, and Wen-Hao Chang, ”Optical properties of Mn in regrown GaN-based epitaxial layers”, Optical Materials Express, Vol. 2, Issue. 4, pp. 469-477, 2012.
[35] Jinn-Kong Sheu, Feng-Wen Huang, Yu-Hsuan Liu, P.C.Chen, Yu-Hsiang Yeh, Ming-Lun Lee, and Wei-Chih Lai, “Photoresponses of manganese-doped gallium nitride grown by metalorganic vapor-phase epitaxy”, Applied Physics Letters, Vol. 102, pp. 071107, 2013.
[36] Jinn-Kong Sheu, Feng-Wen Huang, Chia-Hui Lee, Ming-Lun Lee, Yu-Hsiang Yeh, Po-Cheng Chen and Wei-Chih Lai, “Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer”, Applied Physics Letters, Vol. 103, pp. 063906, 2013.
[37] Jinn-Kong Sheu, Po-Cheng Chen, Cheng-Lun Shin, Ming-Lun Lee, Po-Hsun Liao, and Wei-Chih Lai, “Manganese-doped AlGaN/GaN heterojunction solar cells with intermediate band absorption”, Solar Energy Materials and Solar Cells, Vol. 157, pp. 727-732, 2016.
[38] Íñigo Ramiro, Antonio Martí, Elisa Antolín, and Antonio Luque, “Review of Experimental Results Related to the Operation of Intermediate Band Solar Cells”, IEEE Journal of Photovoltaics, Vol. 4, Issue. 2, pp. 736-748, 2014.
[39] Katsushi Fujii, Takeshi Karasawa, and Kazuhiro Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation”, Japanese journal of applied physics, Vol. 44, pp. L543-L545, 2005.
[40] Donald A. Neamen, “Semiconductor Physics and Devices:Basic Principles”, Third Edition, McGraw-Hill, United States of America, 2003.
[41] Antonio Luque, and Steven Hegedus, “Handbook of Photovoltaic Science and Engineering”, Wiley, England, 2002.
[42] P. Bogusławski and J. Bernholc, “Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N”, Physical Review B, Vol. 72, No. 11, pp. 115208, 2005.
[43] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B, Vol. 308-310, pp. 30-33, 2001.
[44] Fevzi Erdem Arkun, Nadia A El-Masry, John Muth, Xiyao Zhang, Amr Mahrouse, John Zavada, and Salah M Bedair, “Optical Transmission Measurements on MOCVD Grown GaMnN Films on Sapphire”, Materials Research Society Symposia Proceedings, Vol. 955, p.0955-I07-02, 2006.
[45] Adrian W. Bott, “Electrochemistry of semiconductors,” Current Separations, Vol. 17, No. 3, pp. 87-91, 1998.
[46] F. Möllers, H. J. Tolle, R. Memming, “On the Origin of the Photocatalytic Deposition of Noble Metals on TiO2”, Journal of The Electrochemical Society, Vol. 121, Issue. 9, pp. 1160-1167, 1974.
[47] Roel van de Krol, and Michael Grätzel, “Photoelectrochemical Hydrogen Production”, Springer Press, New York, pp. 47-49, 2012.
[48] Daniel L. Fedlheim, and Colby A. Foss, “Metal nanoparticles: synthesis, characterization, and applications”, Marcel Dekker, New York, 2002.
[49] Michelle Duval Malinsky, K. Lance Kelly, George C. Schatz, and Richard P. Van Duyne, “Nanosphere lithography:Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles”, The Journal of Physical Chemistry B, Vol. 105, pp. 2343-2350, 2001.
[50] K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, “The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment”, The Journal of Physical Chemistry B, Vol. 107, pp. 668-677, 2003.
[51] Jörg P. Kottmann, Olivier J. F. Martin, David R. Smith, and Sheldon Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section”, Physical Review B, Vol. 64, pp. 235402, 2001.
[52] Alexandra Boltasseva, and Harry A. Atwater, “Low-loss plasmonic metamaterials”, Materials science, Vol. 331, pp. 290-291, 2011.
[53] K. R. Catchpolea, and A. Polman, “Design principles for particle plasmon enhanced solar cells”, Applied Physics Letters, Vol. 93, pp. 191113, 2008.
[54] M. Pourbaix, “Atlas of electrochemical equilibria in aqueous solutions”, Cebelcor, Houston, 1974.
[55] 李佳輝, “氮化鎵摻雜錳應用於中間能帶太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, 2012.
[56] 鄭宗昇, “氮化鎵摻雜錳應用於中間能帶太陽能電池之光電特性探討”, 國立成功大學光電科學與工程研究所, 碩士論文, 2014.
[57] 施正倫, "錳摻雜於氮化鋁鎵與氮化銦鎵太陽能電池之特性探討”, 國立成功大學光電科學與工程研究所, 碩士論文, 2015.
[58] 陳柏成, “氮化鎵系列摻雜錳形成中間能帶太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 博士論文, 2016.
[59] “Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight”, American Society for Testing and Materials Committee, E948-95, 2001