| 研究生: |
施孟廷 Shih, Meng-Ting |
|---|---|
| 論文名稱: |
以二次諧波研究硼參雜之矽超薄膜及其氣體吸附現象 Analyzing the boron doped Si ultra thin film and the phenomena of gas adsorption by second harmonic generation |
| 指導教授: |
羅光耀
Lo, Kuang-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 表面氣體吸附 、P-N接面 、電場致發二次諧波 、氣體感測器 |
| 外文關鍵詞: | Surface gas adsorption, P-N junction, Electric field induced second harmonic generation (EFISHG), gas sensor |
| 相關次數: | 點閱:32 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雜質半導體顧名思義是在半導體中參雜雜質,在半導體製程過程中參入微量的原子能夠使材料的物理性質改變,而雜質又分為施子(donor)與受子(acceptor),分別形成以自由電子為多數載子的N型半導體,和以電洞為多數載子的P型半導體。定性及定量的量測微量雜質的參雜濃度是半導體製程中不可或缺的程序。而在參雜濃度低到一定程度時,許多的量測工具不再準確,例如:XRD。在這個研究中,我們使用二次諧波作為量測參雜硼之超薄矽薄膜的工具,在實驗中發現二次諧波對於參雜的物種以及濃度非常敏感,能夠隨著二次諧波的變化明顯觀察到不同參雜濃度產生的不同電場變化趨勢。隨後,我們研究P型超薄薄膜表面與氧氣吸附的關係,能夠看到氧氣吸附於材料表面後,二次諧波訊號的明顯變化。最後,由於此研究的材料具有P-N接面,因此我們也對於P-N接面去做檢測,證明P-N接面不影響此研究之數據趨勢。
Impurity semiconductors, as the name implies, are doping something mixed in semiconductors. In the process of semiconductor manufacturing, the addition of a small amount of atoms can change the physical properties of the materials. However, the doping atoms are divided into donors and acceptors, which are formed to N-type semiconductors with electrons as majority carriers, and P-type semiconductors with holes as majority carriers.
Qualitative and quantitative measurement of doping concentration of microscale atoms is an indispensable procedure in semiconductor manufacturing. However, when the doping concentration is low to a certain level, many measurement tools are no longer accurate, such as XRD. In this study, we used second harmonic generation (SHG) as a tool to measure boron-doped silicon ultrathin film. It was found in the experiment that the second harmonic is very sensitive to the species and concentration of the doping, then we can obviously observed different trends of electric field generated by different doping concentrations. Subsequently, we studied the relationship between the surface of the P-type ultra-thin film and the oxygen adsorption, and we can see the obvious change of the SHG signal after the oxygen is adsorbed on the surface of the material. Finally, since the material in this study has a P-N junction, we also test the P-N junction to prove that the P-N junction does not affect the data trend of this study.
[1] Hyo-Joong Kim, Jong-Heun Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sensors and Actuators B, 192, 607(2014).
[2] Zhaoliang Xing, Chong Zhang, Haozhe Cui, Yali Hai, Qingzhou Wu, and Daomin Min, Space Charge Accumulation and Decay in Dielectric Materials with Dual Discrete Traps, Applied Science, 9, 4253(2019).
[3] N. Shamir, J. G. Mihaychuk, and H. M. van Driel, Trapping and detrapping of electrons photoinjected from silicon to ultrathin SiO2 overlayers. I. In vacuum and in the presence of ambient oxygen, Journal of Applied Physics, 88, 896(2000).
[4] N. Shamir and H. M. van Driel, Trapping and detrapping of electrons photoinjected from silicon to ultrathin SiO2 overlayers. II. In He, Ar, H2, N2, CO, and N2O, Journal of Applied Physics, 88, 909(2000).
[5] Bongim Jun, Ronald D. Schrimpf, Daniel M. Fleetwood, Yelena V. White, Robert Pasternak, Sergey N. Rashkeev, Francois Brunier, Nicolas Bresson, Marion Fouillat, Sorin Cristoloveanu, and Norman H. Tolk, Charge Trapping in Irradiated SOI Wafers Measured by Second Harmonic Generation, IEEE Transactions on Nuclear Science, 51, 3231(2004).
[6] V. Fomenko, E. P. Gusev, and E. Borguet, Optical second harmonic generation studies of ultrathin high-k dielectric stacks, Journal of Applied Physics, 97, 083711(2005).
[7] S.-D. Tzeng and S. Gwo, Charge trapping properties at silicon nitride/silicon oxide interface studied by variable-temperature electrostatic force microscopy, Journal of Applied Physics, 100, 023711(2006).
[8] T. Hurma, Effect of boron doping concentration on structural optical electrical properties of nanostructured ZnO films, Journal of Molecular Structure, 1189, 1(2019).
[9] D. Lim, M. C. Downer, and J. G. Ekerdt, Second-harmonic spectroscopy of bulk boron-doped Si(001), Applied Physics Letters, 77, 181(2000).
[10] J. G. Mihaychuk, N. Shamir, and H. M. van Driel, Multiphoton photoemission and electric-field-induced optical second-harmonic generation as probes of charge transfer across the Si/SiO2 interface, Physical Review B, 59, 2164(1999).
[11] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics, Physical Review Letters, 7, 118(1961).
[12] Warren N. Herman, L. Michael Hayden, Maker fringes revisited: second-harmonic generation from birefringent or absorbing material, Journal of the Optical Society of America B, 12, 416(1995).
[13] G. Lüpke, Characterization of Semiconductor Interfaces by Second-Harmonic Generation, Surface Science Reports, 35, 75 (1999).
[14] N. Bloembergen, R. K. Chang, S. Jha, and C. H. Lee, Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry, Physical Review, 174, 813(1968).
[15] H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Second-Harmonic Reflection from Silicon Surfaces and Its Relation to Structural Symmetry, Physical Review Letters, 51, 1983(1983).
[16] J. E. Sipe, D. J. Moss, and H. M. vanDriel, Phenomenological Theory of Optical Second- and Third-Harmonic from Cubic Centrosymmetric Crystals, Physical Review B, 35, 1129(1987).
[17] Carsten Schinke, P. Christian Peest, Jan Schmidt, Rolf Brendel, Karsten Bothe, Malte R. Vogt, Ingo Kröger, Stefan Winter, Alfred Schirmacher, Siew Lim, Hieu T. Nguyen, and Daniel MacDonald, Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon, AIP Advances, 5, 067168(2015).
[18] U. S. Vogl, S. F. Lux, P. Das, A. Weber, T. Placke, R. Kostecki, and M. Winter, The Mechanism of SEI Formation on Single Crystal Si(100),Si(110) and Si(111) Electrode, Journal of The Electrochemical Society, 162, A2281(2015).
[19] Xinhui Zhang, Zhenghao Chen, Linzhen Xuan, Shaohua Pan, and Guozhen Yang, Enhancement of bulklike second-order nonlinear susceptibility in SiGe/Si step wells and biasing-field controlled (Si5Ge5)100 superlattices, Physical Review B, 56, 15842(1997).
[20] D. J. Bottomley, G.Lüpke, J. G. Mihaychuk, and H. M. van Driel, Determination of the crystallographic orientation of cubic media to high resolution using optical harmonic generation, Journal of Applied Physics, 74, 6072(1993).
[21] J. I. Dadap, P. T. Wilson, M. H. Anderson, and M. C. Downer, Femtosecond carrier-induced screening of dc electric-field-induced second-harmonic generation at the Si(001)-SiO2 interface, Optics Letters, 22, 901(1997).
[22] J. Bloch, J. G. Mihaychuk, and H. M. van Driel, Electron Photoinjection from Silicon to Ultrathin SiO2 Films via Ambient Oxygen, Physical Review Letters, 77, 920(1996).
[23] W. Daum, H.J. Krause, U. Reichel, and H. Ibach, Identification of Strained Silicon Layers at Si-SiO2 Interfaces and Clean Si Surfaces by Nonlinear Optical Spectroscopy, Physical Review Letters, 71, 1234(1993).
[24] K. Pedersen, P. Morgen, Dispersion of optical second-harmonic generation from Si(111)7×7, Physical Review B, 52, 2277(1995)
[25] C. Meyer, G. Lüpke, U. Emmerichs, F. Wolter, and H. Kurz, Electronic Transitions at Si(111)/SiO2 and Si(111)/Si3N4 Interfaces Studied by Optical Second-Harmonic Spectroscopy, Physical Review Letters, 74 , 3001(1995).
[26] Peter Bratu and Ulrich Höfer, Phonon-Assisted Sticking of Molecular Hydrogen on Si(111)-(7×7), Physical Review Letters, 74, 1625(1995)
[27] J. I. Dadap, Z. Xu, X. F. Hu, and M. C. Downer, Second-harmonic spectroscopy of a Si(001) surface during calibrated variations in temperature and hydrogen coverage, Physical Review B, 56, 13367(1997).
[28] J. Qi, M. S. Yeganeh, I. Koltover, and A. G. Yodh, Depletion-Electric-Field-Induced Changes in Second-Harmonic Generation from GaAs, Physical Review Letters, 71, 633(1993).
[29] Ming Lei, Jacqueline Zou, Justin Lee, John Changala, and Brian Larzel, Detection of Thermal Donors from Electrically Active Oxygen Interstitials by Optical Second Harmonic Generation, ASMC, 197-201(2018).
[30] O. A. Aktsipetrov, A. A. Fedyanin, A. V. Melnikov, E. D. Mishina, A. N. Rubtsov, M. H. Anderson, P. T. Wilson, M. ter Beek, X. F. Hu, J. I. Dadap, and M. C. Downer, dc-electric-field-induced and low-frequency electromodulation second-harmonic generation spectroscopy of Si(001)- SiO2 interfaces, Physical Review B, 60, 8924(1999).
[31] H. Park, J. Qi, Y. Xu, K. Varga, S. M. Weiss, B. R. Rogers, G. Lüpke, and N. Tolk, Characterization of boron charge traps at the interface of Si/SiO2 using second harmonic generation, Applied Physics Letters, 95, 062102(2009).
[32] Heungman Park, JingboQi,YingXu, Gunter Lüpke, and Norman Tolk, Polarization-dependent temporal behavior of second harmonic generation in Si/SiO2 systems, Journal of Optics, 13, 055202(2011).
[33] J. G. Mihaychuk, J. Bloch, Y. Liu, and H. M. van Driel, Time-dependent second-harmonic generation from the Si-SiO2 interface induced by charge transfer, Optics Letters, 20, 2063(1995).
[34] S. Mizushima, Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement, Metrologia, 41, 137 (2004).
[35] Ashok B. Gadkari, Tukaram J. Shinde, and Pramod Nivrutti Vasambekar, Ferrite Gas Sensor, IEEE Sensors Journal, 11, 849(2011).
[36] N. Barsan, D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to? , Sensors and Actuators B, 121, 18(2007).
[37] Nare Tsokela, Simulating the processes in the depletion region of a schottky diode, Third year physics project (PHY 353), University of Pretoria,(2014)
[38] Supab Choopun, Niyom Hongsith, and Ekasiddh Wongrat, Nanowires - Recent Advances, Metal-Oxide Nanowires for Gas Sensors (2012)
[39] Hans Swenson and Nicholas P. Stadie, Langmuir’s Theory of Adsorption: A Centennial Review, Langmuir (2019).
[40] G. Barbero, L.R. Evangelista, I. Lelidis, Effective adsorption energy and generalization of the Frumkin-Fowler-Guggenheim isotherm, Journal of Molecular Liquids, 327, 114795 (2021).
[41] Monique A. van der Veen, Ventsislav K. Valev, Thierry Verbiest, and Dirk E. De Vos, In Situ Orientation-Sensitive Observation of Molecular Adsorption on a Liquid/Zeolite Interface by Second-Harmonic Generation, Langmuir Letter, 25, 4256(2009).
[42] Li Le, Liu Yanghua, Yu Gongda, Wang Wencheng, and Zhang Zhiming, Optical second-harmonic generation study of oxygen adsorption on a polycrystalline Ag surface, Physical Review B, 40, 10100(1989).
[43] Robert M. Corn and Daniel A. Higgins, Optical Second Harmonic Generation as a Probe of Surface Chemistry, Chemical Reviews, 94, 107(1994).
[44] Julie L. Fiore, Vasiliy V. Fomenko, Dora Bodlaki, and Eric Borguet, Second harmonic generation probing of dopant type and density at the Si/SiO2 interface, Applied Physics Letters, 98, 041905(2011).
[45] N. Shamir, J. G. Mihaychuk, and H. M. van Driel, Universal Mechanism for Gas Adsorption and Electron Trapping on Oxidized Silicon, Physical Review Letters, 82, 359(1999).
[46] J. Fang, W. W. Heidbrink, and G. P. Li, Nonlinear optical diagnosis of oxide traps formed during reactive ion etching, Journal of Applied Physics, 88, 2641(2000).
[47] F. Flores, J. Sánchez-Dehesa et F. Guinea, Metal-Semiconductor Junctions, J. Phys. Colloques, 45, C5-401-C5-407(1984).
[48] Benjamin Lipovšek, Franc Smole, Marko Topič, Iztok Humar, and Anton Rafael Sinigoj, Driving forces and charge-carrier separation in p-n junction solar cells, AIP Advances, 9, 055026(2019).
[49] Constantine T. Dervos, Panayotis D. Skafidas, John A. Mergos and Panayota Vassiliou, p-n Junction Photocurrent Modelling Evaluation under Optical and Electrical Excitation, Sensors, 5, 58-70(2004).
[50] J. Adey, R. Jones, D. W. Palme, P. R. Briddon, and S. Öberg, Degradation of Boron-Doped Czochralski-Grown Silicon Solar Cells, Physical Review Letters, 93, 055504(2004).
[51] Young Jun Oh, Hyeon-Kyun Noh, K.J. Chang, First-principles study of the segregation of boron dopants near the interface between crystalline Si and amorphous SiO2, Physica B, 407, 2989(2012).
[52] Young Jun Oh, Jin-Heui Hwang, Hyeon-Kyun Noh, Junhyeok Bang, Byungki Ryu, K.J. Chang, Ab initio study of boron segregation and deactivation at Si/SiO2 interface, Microelectronic Engineering, 89, 120(2012).
[53] Geun-Myeong Kim, Young Jun Oh, and K. J. Chang, Effects of interface bonding and defects on boron diffusion at Si/SiO2 interface, Journal of Applied Physics, 114, 223705(2013).
[54] Chastain, J., & King Jr, R. C. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, USA, 261 (1992).
[55] L. Gallmann, I. Jordan, H. J. Wörner, L. Castiglioni, M. Hengsberger, J. Osterwalder, C. A. Arrell, M. Chergui, E. Liberatore, U. Rothlisberger, and U. Keller, Photoemission and photoionization time delays and rates, Structural Dynamics, 4, 061502(2017).