簡易檢索 / 詳目顯示

研究生: 吳柏諭
Wu, Bo-Yu
論文名稱: 重模錦水頁岩水力封閉屏障性能之研究
Study on the hydraulic barrier performance of remodeling Chinshui shale
指導教授: 吳建宏
Wu, Jian-Hong
共同指導教授: 林宏明
Lin, Hung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 137
中文關鍵詞: 錦水頁岩濾紙法三軸透水水力破裂
外文關鍵詞: Chinshui shale, Fliter Paper Method, Triaxial permeability, Hydrofractured
相關次數: 點閱:146下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頁岩通常被視為地層中的阻隔層,常有斷層通過,但大深度下原狀岩樣取得不易,因此,為探討大深度下斷層通過錦水頁岩對水力密封性所造成的影響,建立試體之重模技術有其必要性。本文以錦水頁岩為對象,利用自行發展之試體重模技術,建立錦水頁岩水力封閉屏障性能,本研究之水力封閉屏障性能研究主要分三部份:(1)斷層破裂帶上之毛細壓力大於地層水壓力會產生毛細管屏障現象,並利用濾紙法建立毛細管屏障之壓力範圍。(2) 地層水壓力大於毛細壓力為滲透性屏障,另外透過進行室內三軸滲透性試驗,在不同有效圍壓下探討滲透性受圍壓效應的影響,建立其滲透性屏障應力範圍。(3)當地層水壓力大於斷層破裂帶之強度,使之產生開裂,利用室內水力破裂試驗建立開裂式屏障之應力範圍。

    Shale often be seen as the barrier layer underground and is cut by faults. However, it is very difficult to obtain a rock sample from great depth. Therefore, a sample remodeling technology is required to discuss hydraulic barrier of the fault gouge in shale. This study establishes the hydraulic barrier performance of Chinshui shale combined with the self-developed sample remodeling technology. The study includes the following three parts: (1) Capillary seal performance (2) Permeable seal barrier performance (3) Hydrofractured seal performance.Keyword: Chinshui shale, Capillary seal performance, Permeable seal barrier performance, Hydrofractured seal performance.

    目錄 摘要..........................I 誌謝........................VII 目錄.......................VIII 表目錄......................XII 圖目錄......................XIV 第一章 緒論..................1 1-1前言.......................1 1-2研究動機與目的...............1 1-3研究內容與流程...............3 第二章 文獻回顧...............5 2-1 斷層泥的生成與與定義.........5 2-2頁岩水力封阻屏障現象..........6 2-2-1毛細屏障現象...............6 2-2-2滲透性屏障現象............17 2-2-3開裂式屏障現象............18 2-3毛細屏障...................18 2-3-1土壤吸力理論..............18 2-3-2基質吸力.................21 2-3-3土壤水分特性曲線...........24 2-4滲透性屏障..................28 2-5開裂式屏障..................31 2-5-1水力破裂試驗..............31 2-5-2室內水力破裂試驗理論........36 2-5-3水力破裂試驗相關研究........39 2-6現地應力介紹.................43 第三章 研究場址與試驗材料.........46 3-1區域地質概述.................46 3-1-1鐵砧山錦水頁岩之地質概述.....46 3-1-2永和山錦水頁岩之地質概述.....49 3-2研究場址地層.................51 3-3取樣地點介紹.................53 3-4試體製作....................57 第四章試驗儀器與研究方法..........61 4-1濾紙法量測方法...............61 4-1-1濾紙法試驗理論.............61 4-1-2濾紙法校正.................62 4-1-3濾紙法量測土壤吸力..........67 4-2三軸透水試驗.................70 4-2-1三軸透水儀器介紹............70 4-2-2三軸透水試驗步驟............73 4-3水力破裂試驗.................75 4-3-1水力破裂試體製作............76 4-3-2水力破裂試驗儀器............77 4-3-3水力破裂試驗步驟............82 第五章 試驗結果與分析.............86 5-1物理性質試驗結果..............86 5-2濾紙法試驗...................87 5-2-1濾紙法校正結果..............87 5-2-2土壤-水分特性曲線...........89 5-2-3使用推估模式................92 5-3三軸透水試驗結果...............99 5-3-1高低圍壓三軸透水結果比較............99 5-3-2三軸透水結果與國外斷層泥滲透率比較............107 5-4水力破裂結果............112 5-4-1重模鐵砧山錦水頁岩開裂屏障............112 5-4-2重模永和山錦水頁岩開裂屏障............116 5-4-3水力破裂試驗所得之張力強度............119 第六章 結論與建議............122 6-1結論............122 6-2建議............123 參考文獻............124 附錄一 室內水力破裂試驗厚壁理論應用公式推導(Jaeger and Cook, 1979) ............133 表目錄 表2-1滲透率換算對照圖(摘自Wakeman and Tarleton , 1999)............12 表2-2三種毛細壓力試驗結果比較(摘自Ito et al ., 2010)............16 表2-3五種毛細壓力試驗方法優劣點比較(Ito et al ., 2010)............17 表2-4土壤吸力之量測設備(摘自Fredlund and Rahardjo, 1993)............21 表2-5土壤水分特性曲線模式(陳進發,2002)............28 表2-6鬆散岩體中之滲透係數(摘自《水利水電工程地質勘察規範》(GB50287-99) ............29 表2-7沉積岩體中之滲透係數(摘自《水利水電工程地質勘察規範》(GB50287-99) ............29 表2-8結晶岩體中之滲透係數(摘自《水利水電工程地質勘察規範》(GB50287-99) ............30 表2-9岩體滲透分級(摘自《水利水電工程地質勘察規範》(GB50287-99)............30 表2-10各井垂直應力公式與梯度(汪蘭君,2010)............44 表2-11計算井下現地應力狀態及地層孔隙液壓所需要的參數及其相對應資料取得的方法(嚴珮綺,2012)。............45 表3-1台灣陸上主要構造之蓋層及其深度(摘自呂明達等人,2008) ............47 表3-2苗栗幅圖地層與岩性表(何信昌,1994)............52 表4-1常溫下不同濃度氯化鈉溶液對應之總吸力(Bulut et al., 2001)............64 表5-1重模錦水頁岩粉末物性試驗結果............86 表5-2 van Genuchten model 所使用之參數值............96 表5-3重模鐵砧山錦水頁岩低有效圍壓之滲透試驗結果表............101 表5-4重模永和山錦水頁岩有低效圍壓之滲透試驗結果表............102 表5-5重模鐵砧山錦水頁岩高有效圍壓之滲透試驗結果表............104 表5-6重模永和山錦水頁岩高有效圍壓之滲透試驗結果............105 表5-7三軸透水結果與國內外斷層泥滲透率比較表............110 表5-8水之黏滯係數表(Joseph et al., 1978 )............110 圖目錄 圖1 1研究流程圖............4 圖2-1毛細管屏障(Ingram and Urai, 1997)............6 圖2-2(a) 潤濕相(Vavra et al., 1992)............7 圖2-2(b) 非潤濕相( Vavra et al., 1992)............7 圖2-3壓汞法設備配置圖(財團法人中興工程顧問社,2011)............10 圖2-4階段加壓法設備配置圖( Ito et al., 2010) ............11 圖2-5殘壓法設備配置圖( Ito et al., 2010)............13 圖2-6標準試驗法設備配置圖( Busch and Müller, 2010)............14 圖2-7離心法設備配置圖(http//www.harbert-eng.com)............15 圖2-8滲透性屏障 (Ingram and Urai, 1997)............18 圖2-9開裂式屏障(Ingram and Urai, 1997)............18 圖2-10壓密 Regina 黏土的總吸力、基質吸力與滲透吸力之量測值(Krahn and Fredlund, 1992)............20 圖2-11液內及液面分子之凝聚力(Hillel, 1980)............22 圖2-12毛細現象與模型............23 圖2-13水在不飽和土壤兼受毛細作用及吸附作用所形成之基質吸力(Hillel, 1980)............24 圖2-14典型的土壤-水份特性曲線(修改自Fredlund and Xing, 1994) ............25 圖 2-15四種加拿大典型水份特性曲線(Vanapalli et al., 1999)............26 圖2-16典型水分特性曲線不飽和階段示意圖 ............27 圖2-17水力破裂法試驗設備示意圖(摘自Haimson et al., 2003)............32 圖2-18水力破裂試驗壓力與時間記錄圖(改繪自Cornet et al., 2003............33 圖2-19裂縫拓印設備示意圖(改繪自Haimson et al., 2003)............33 圖2-20裂縫拓印結果圖(改繪自Haimson and Cornet, 2003)............34 圖2-21試驗室岩石試體受力情形示意圖............37 圖2-22垂直裂縫下軸壓與破裂壓力之關係(翁駿德,1984)............40 圖2-23垂直裂縫下圍壓與破裂壓力之關係(翁駿德,1984)............40 圖2-24水平裂縫下軸壓與破裂壓力之關係(翁駿德,1984)............41 圖2-25水平裂縫下圍壓與破裂壓力之關係(翁駿德,1984)............41 圖2-26大理石之張力強度(水力破裂)與溫度之關係(曾慶恒,1994)............42 圖2-27鐵砧山地區深度-地層垂直應力圖(汪蘭君,2010)............44 圖2-28永和山地區推估之現地應力場(摘自嚴珮綺,2012)............45 圖3-1鐵砧山氣田打鹿砂岩層頂部地下構造(汪蘭君,2010)............48 圖3-2永和山氣田打鹿砂層頂部構造圖(曾繼忠等人,2012)............50 圖3-3苗栗鐵砧山獅潭向斜地質圖(資料來源:中央地質調查所 http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm)............53 圖3-4苗栗永和山錦水背斜地質圖(資料來源:中央地質調查所http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm)............54 圖3-5獅潭鄉鐵砧山錦水頁岩現場取樣情形(X:241696、Y:2714352)............54 圖3-6頭屋鄉永和山錦水頁岩現場取樣情形(X:236702、Y:2718534)............55 圖3-7藍框為七個區域構造,由北而南分別為:青草湖、寶山、永和山、錦水、出磺坑、鐵砧山等背斜及后里台地,紅色實心方形為求最大水平應力方位之井位,AA’至GG’為各構造剖面之所在位置(嚴珮綺,2012)............56 圖3-8鐵砧山構造剖面圖(修改自黃旭燦等,2004)............56 圖3-9永和山背斜構造剖面圖(修改自黃旭燦等,2004)............57 圖3-10重模盒............58 圖3-11重模盒配置............59 圖3-12重模試體製作儀............59 圖3-13重模試體完成圖............60 圖4-1Whatman No.42 實驗用濾紙............63 圖4-2不同批次濾紙所得之校正曲線 (摘自 Likos and Lu, 2002)............63 圖4-3濾紙進行校正試驗儀器配置(修正自Bulut et al., 2001)............65 圖4-4進行濾紙法校正儀器照片............65 圖4-5恆溫恆濕箱(HIPOINT RH-80)............66 圖4-6有效位數達0.0001g之電子磅秤(AND GR-200)............67 圖4-7濾紙法量測土壤吸力試驗裝置示意圖............69 圖4-8試驗試體配置............70 圖4-9土壤三軸室............71 圖4-10低圍壓三軸透水試驗............71 圖4-11岩石三軸室(35MPa)............72 圖4-12最大設計壓力35MPa步進馬達............73 圖4-13水力破裂用鑽桿(外徑1cm,鑽頭到夾桿長度18.2cm)............76 圖4-14水力破裂試體完成圖............77 圖4-15岩石三軸室(70MPa)............78 圖4-16 MTS 300 噸高性能材料試驗儀............79 圖4-17英國 ELE 公司生產之加壓系統............80 圖4-18美國GCTS公司生產之加壓系統............80 圖4-19 FlexTest GT 控制系統............81 圖4-20不銹鋼蓋子黏合於試體兩端............82 圖4-21水力破裂組立完成............82 圖4-22重模永和山錦水頁岩之破裂應力............83 圖4-23鐵砧山地層孔隙液壓-深度分佈(TVDSL:海平面以下之垂深)............84 圖4-24永和山地區推估之現地應力場(嚴珮綺,2012)............84 圖4-25鐵砧山地區深度-地層垂直應力圖(汪蘭君,2010)............85 圖5-1重模錦水頁岩粉末粒徑分佈曲線............87 圖5-2本研究校正曲線與ASTM 校正曲線比較圖............88 圖5-3重模鐵砧山錦水頁岩土壤-水分特性曲線............90 圖5-4重模永和山錦水頁岩土壤-水分特性曲線............91 圖5-5比較重模鐵砧山頁岩與重模永和山頁岩土壤-水分特性曲線............91 圖5-6重模鐵砧山錦水頁岩土壤-水分特性曲線............93 圖5-7典型土壤水分特性曲線(改繪自 Fredlund and Xing, 1994)............94 圖5-8 vG model 參數 n 變化示意圖(Lu and Likos, 2004)............95 圖5-9 vG model 參數α 變化示意圖(Lu and Likos, 2004)............95 圖5-10重模鐵砧山錦水頁岩實驗結果與模擬土壤-水份特性曲線............96 圖5-11重模永和山錦水頁岩實驗結果與模擬土壤-水份特性曲線............97 圖5-12重模鐵砧山錦水頁岩進氣吸力值與毛細屏障極限 ............98 圖5-13重模永和山錦水頁岩進氣吸力值與毛細屏障極限 ............99 圖5-14重模鐵砧山錦水頁岩不同低有效圍壓下滲透係數變化圖............103 圖5-15重模永和山錦水頁岩不同低有效圍壓下滲透係數變化圖............103 圖5-16重模鐵砧山錦水頁岩不同高有效圍壓下滲透係數變化圖............106 圖5-17重模永和山錦水頁岩不同高有效圍壓下滲透係數變化圖............106 圖5-18斷層泥滲透率與有效圍壓圖(改繪自Faulkner, 2004)............107 圖5-19車籠埔斷層地層剖面圖(Dong et al. 2010)............108 圖5-20車籠埔斷層滲透率對應有效圍壓圖(Dong et al. 2010)............109 圖5-21車籠埔斷層是試編號R351_sec2滲透率圖(Dong et al. 2010)............109 圖5-22重模鐵砧山錦水頁岩水力破裂試驗結果-內外壓與時間圖............112 圖5-23重模鐵砧山錦水頁岩水力破裂試驗試體破壞照(圍壓=5MPa)............113 圖5-24重模鐵砧山水力破裂試驗結果-內外壓與時間圖(圍壓=10MPa)............114 圖5-25重模鐵砧山錦水頁岩水力破裂試驗試體破壞照(圍壓=10MPa)............114 圖5-26重模鐵砧山錦水頁岩水力破裂試驗結果-內外壓與時間圖............115 圖5-27重模鐵砧山錦水頁岩水力破裂試驗試體破壞照............116 圖5-28重模永和山錦水頁岩水力破裂試驗結果-內外壓與時間圖............117 圖5-29重模永和山錦水頁岩水力破裂試驗試體破壞照(圍壓=5MPa)............117 圖5-30重模永和山水力破裂試驗結果-內外壓與時間圖............118 圖5-31重模永和山錦水頁岩水力破裂試驗試體破壞照............119 圖附1- 1厚壁理論受力情況............133 圖附1- 2厚壁上某單位元素之徑向平衡圖............135 圖附1- 3室內水力破裂式樣受力情況............137

    1.中央地質調查所,地質資料整合查詢系統,
    「http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm」, 2014。
    2.水利水電工程地質勘察規範 (GB 50287-99),國家質量技術監督局、中華人民共和國建設部聯合發布,北京,1999。
    3.王墨江、王勝雄、陳永隆、陳大麟、吳健一,「利用低熱值礦品氣增產凝結油之可行性研究 」,中國石油股份有限公司探採研究所研究報告,苗栗,台灣,1993。
    4.王墨江、周定芳、張資宜、王勝雄、王志銘,「鐵砧山氣田特性分析」,石油探採研究彙報,第20卷,第431~436 頁,1997。
    5.台灣省礦物局(http://gis.geo.ncu.edu.tw/mineral/07.htm)。
    6.叶为民、白云、金麒、陈宝、崔玉军,「上海软土土水特征的室内试验研究」,岩土工程学报,第28卷,第2期,第260-263頁,2006。
    7.沈建志,「斷層泥力學特性之初步研究」,國立中央大學應用地質研究所碩士論文,中壢,1995。
    8.呂明達、宣大衛、黃雲津、范振暉,「台灣陸上二氧化碳地質封存潛能推估」,鑛冶,第52卷,第3期,第154-161頁,2008。
    9.呂嘉容,「低碳能源新希望-頁岩氣之崛起與未來趨勢」,經濟部能源局能源報導,第32~34頁,2012。
    10.汪蘭君 ,「鐵砧山現地應力場與斷層再活動分析」,國立中央大學應用地質研究所碩士論文,中壢,2010。
    11.何信昌,台灣地質圖說明書,圖幅第十二號,苗栗,經濟部中央地質調查所,台北,台灣,1994。
    12.林國安、吳榮章、余輝龍、宣大衡,「二氧化碳地下封存技術與展望」,礦冶,56卷2期,第17~33頁,2008。
    13.林鎮國,「二氧化碳減量」,科學發展,413期,第28~33頁,2007。
    14.邱華燈、徐兆祥,「苗栗縣錦水背斜地下地質」,台灣石油地質,第2號,第253~269頁,1963。
    15.洪清琳,「斷層泥力學性質與微觀組構觀察之研究」,國立中央大學應用地質研究所碩士論文,中壢,1996。
    16.財團法人中興工程顧問社,「二氧化碳地質封存二相流試驗設備之建立與功能驗證計畫期末成果報告書」,台灣電力公司,台北,2011。
    17.翁駿德,「水壓破碎法應用於滲透性砂岩之初步研究」,國立成功大學土木工程研究所碩士論文,台南,1984。
    18.黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威、徐祥宏,「斷層活動性觀測與地震潛勢評估調查研究─台灣陸上斷層帶地質構造與地殼變形調查研究(5/5)-台灣西部麓山帶地區地下構造綜合分析」,經濟部中央地質調查所報告,第 93-13 號,共 59頁,2004。
    19.張智勇,「軟弱沉積岩層滲透異向性之探討」,國立中央大學土木工程研究所碩士論文,中壢,2004。
    20.張憲卿,台灣地質圖說明書,圖幅第十七號,大甲,經濟部中央地質調查所,台北,台灣,1994。
    21.陳大麟、陳永隆、吳健一,「氣層流體相態行為之模擬─永和山、鐵砧山、青草湖氣田 」,中國石油股份有限公司探採研究所研究報告,苗栗,台灣,1992。
    22.陳大麟、陳永隆、黃素謹 、吳榮章、吳世雄、吳健一,「岩心毛細壓力之測定及應用」,中國石油股份有限公司探採研究所研究報告,苗栗,台灣,1993。
    23.陳錦清、俞旗文,「坪林隧道沿線水力破裂法現地應力量測」,地工技術,第 46 期,第 35-46 頁,1994。
    24.陳進發,「未飽和層土壤水平衡模式解析及其應用之研究」,成功大學資源工程學系博士論文,台南,台灣,2002。
    25.曾慶恒,「以水力破裂法探討高溫下大理石之張力強度」,國立成功大學土木工程研究所碩士論文,台南,台灣,1994。
    26.曾繼忠、吳偉智、陳大麟,「鐵砧山氣田背斜構造之斷層封阻性探討」,台灣石油地質,第36卷,第215-240頁,2003。
    27.曾繼忠、陳大麟、胡興台、林再興,「永和山氣田二氧化碳封存先導試驗模擬研究」,礦冶,第56卷1期,第23~40頁,2012。
    28.經濟部中央地質調查所,五萬分之一臺灣地質圖說明書,
    「http://gc.moeacgs.gov.tw/geo/frame/Explanatory/Explanatory_type3.cfm?themapid=C12&thename=%C0A%A4%F4%AD%B6%A9%A5」,1995。
    29.嚴珮綺,「利用鑽井資料推估台灣新竹至台中地區的地下現地應力狀態」,國立中央大學地球物理研究所碩士論文,中壢,2012。
    30.ASTM Standard. D5298-10: Standard Test Method for the Measurement of Soil Potential (Suction) Using Filter Paper, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 2002.
    31.Brutsaert W. “Probability laws for pore size distribution”, Soil Science Society of America Journal, Vol. 101, pp. 85-92, 1966.
    32.Bulut, R., Lytton, R. L., and Wray, W. K. “Soil suction measurements by filter paper”, Geotechnical Special Publication, No. 115, pp. 243-261, 2001.
    33.Busch, A. and Müller, N. “Determining CO2 /brine relative permeability and capillary threshold pressures for reservoir rocks and caprocks: Recommendations for development of standard laboratory protocols”, Proceedings of GHGT-10, Vol. 7, Netherlands, pp. 6053~6060, 2010.
    34.Cornet, F. H. “The HTPF and the integrated stress determination methods”, In Comprehensive Rock Engineering, Pergamon Press: Oxford, New York, Seoul, Tokyo, Vol.3, pp.413-432, 1993.
    35.Cornet, F. H., Doan, M. L., Fontbonne, F. “Electrical imaging and hydraulic testing for a complete stress determination”, International Journal of Rock Mechanics and Mining Sciences, Vol.40, pp.1225-1241, 2003.
    36.Croney, D., and Coleman, J. D. “Soil Thermodynamics Applied to the Movement of Moisture in Road Foundations”, Proceedings of the seventh International Congress for Applied Mechanics, Vol. 3, London, pp. 163-177, 1948.
    37.Egermann, P., Lombard, J-M., and Bretonnier, P. “A Fast and Accurate Method to Measure Threshold Capillary Pressures under Representative Conditions”, Paper SCA A46, Presented at the 2006a SCA International Symposium, Trondheim, pp.18-22, 2006.
    38.Faulkner, D. R. “A model for the variation in permeability of clay-bearing fault gougewith depth in the brittle crust,” Geophysical Research Letters, Vol. 31, 2004.
    39.Fredlund, D. G. and Rajardjo, H. “Soil Mechanics for UnsaturatedSoils” , John Wiley & Sons, New York, 1993.
    40.Fredlund, D. G. and Xing, A. “Equations for the woil-watercharacteristic curve”, Candian Geotechnical Journal, Vol. 31, pp.521-532, 1994.
    41.Gardner, R. “A Method of Measuring the Capillary Tension of Soil Moisture Over a Wide Moisture Range,” Soil Science, Vol. 43, No. 4, pp. 277-283, 1937.
    42.Garner, W.R., and Mayhugh, M.S. “Solutions and tests of the diffusion equation for the movement of water in soil”, Soil Science Society of America Journal, Vol. 22, pp. 197-201, 1958.
    43.Haimson, B., “Hydraulic Fracturing in Porous-Permeable Materials”, Journal of Petroleum Technology, Vol. 21, pp. 881-817, 1969.
    44.Haimson, B. C. “The hydraulic fracturing method of stress measurement: Theory and practice, In Comprehensive rock engineering”, Vol. 3, New York, pp. 395-412, 1993.
    45.Haimson, B. C., Cornet, F. H. “ISRM suggested methods for rock stress estimation– Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)”, International Journal of Rock Mechanics and Mining Sciences, Vol. 40, pp.1011-1020, 2003.
    46.Hassler, G.L., and Brunner, E. “Measurement of capillary pressure in small core samples”, Transactions of the AIME, Vol. 160, pp.114-23, 1945.
    47.Heystee, R., Roegiers, J. C. “The Effect of Stress no The Permeability of Rock Cores-A Facet of Hydraulic Fracturing”, National Research council of Canada, Canada, Vol. 18, pp.195-204, 1981.
    48.Hildenbrand, A., Schlömer, S., and Krooss, B.M. “Gas breakthrough experiments on fine-grained sedimentary rocks”, Geofluids, Vol. 2, pp.3-23, 2002.
    49.Hillel, D. “Fundamentals of Soil Physics”, Academic Press, New York, 1980.
    50.Hubbert M. K., and Willis D. G. ”Mechanics of Hydraulic Fracturing”, Transactions of the AIME, Vol.4 , No.6, pp. 153-168, 1957.
    51.Ibrahim, M.A., Tek, M.R., and Kats, D.L. “Threshold Pressure in Gas Storage: Project 26-47 of the Pipeline Research Committee American Gas Association at The University of Michigan”, Michigan, USA, 1970.
    52.Ingram, G.M., Urai, J.L. “Naylor MA Sealing processes and top seal assessment”, In: Moller-Pedersen P, Koestler AG (eds), Hydrocarbon seals: importance for exploration and production. Norwegian Petroleum Society (NPF), Special Publication 7, pp.165–175, 1997.
    53.IPCC “The IPCC special report on carbon dioxide capture and storage”, Cambridge University Press, Vol. 431, 2005.
    54.Ito T., Sato A., and Hayashi K. “Laboratory and field verification of a new approach to stress measurements using a dilatometer tool”, International Journal of Rock Mechanics and Mining Sciences, Vol.38, pp.1173-1184, 2001.
    55.Ito, D., Akaku, K., Okabe, T., Takahashi, T., and Tsuji, T. “Measurement of Capillary Threshold Pressures for Seal Rocks using the Step-by-step Approach and the Residual Pressure Approach”, Proceedings of GHGT-10, Vol.4, Chiba, JAPAN , pp.5211-5218, 2010.
    56.Jaeger, J. C., Cook, N. G. W. “Fundamentals of Rock Mechanics”, 3rd edition, Chapman Hall, London, 1979.
    57.Dong, J. J. , Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., Wu, Y. H., Sone, H. “Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A”, International Journal of Rock Mechanics & Mining Sciences, Vol. 47, pp. 1141-1157, 2010.
    58.Krahn, J., and Fredlund, D. G. “On total matric and osmotic suction”, Soil Sciences, Vol. 114, No. 5, pp. 339-348, 1992.
    59.Likos, W. J., and Lu, N. “On the filter paper technique for themeasurement of total soil suction”, 81thAnnual Meeting of Transportation Research Board, CD-ROM. National Research Council, Washington, D.C, U.S.A, 2002.
    60.Lu, N., and Likos, W. J. “Unsaturated Soil Mechanics”, John Wiley & Sons, New Jersey, 2004.
    61.Olsen, H. W., Morin, R.H., and Nichols, R.W. “Flow Pump Applications in Triaxial Testing”, Advanced Triaxial Testing of Soil and Rock, ASTM STP 977, Rober T. D., Ronald, C. C. and Marshall, L.S., Eds., American Society for Testing and Materials, Philadelphia, pp.68-81, 1998.
    62.Russo, D. “Determining soil hydraulic properties by parameter estimation: on the selection of a model for the hydraulic properties”, Water Resources Research, Vol 24 (3), pp. 453-459, 1988.
    63.Sir William Thomson “On the equilibrium of vapour at a curved surface of liquid”, Philosophical Magazine, Series 4, 42 (282), pp. 448-452, 1871.
    64.Sowers, G. F. “Rock Permeability or Hydraulic Conductivity-An Overview”, Permeability and Groundwater Transport, ASTM STP 746, T. F. Zimmin and C. O. Riggs, Eds., American Society for Testing and Materials, 1981, pp.65-83,1981.
    65.Tyler, S.W. and Wheatcraft, S.W. “Application of fractal mathematics to soil water retention estimation”, Soil Science Society of America Journal, Vol 59, pp. 987–996, 1989.
    66.Tyler, S.W., and Wheatcraft, S.W. “Fractal processes in soil water retention”, Water Resources Research, Vol. 26( 5), pp. 1047-1054, 1990.
    67.Van Genuchten, M.Th. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Science Society of America Journal, Vol . 44, pp. 892–898, 1980.
    68.Van Genuchten, M. Th., and Nielsen, D.R. “On describing and predicting the hydraulic properties of unsaturated soils”, Annales Geophysicae, Vol. 3, No. 5, pp. 615–628, 1985.
    69.Vavra, C. L., Kaldi, J. G., and Sneider, R. M. “Development Geology Reference Manual”, pp.221-225, 1992.
    70.Vanapalli, S.K., Fredlund, D.G., and Pufha, D.E. “The Influence of a Compacted Till”, Geotechnique, Vol.49, No.2, pp.143-159, 1999.
    71.Vargaftik, N. B., Volkov, B. N., and Voljal, L. D., “International Tables of the Surface Tension of Water”, Moscow, Vol. 12, No. 3, 1983.
    72.Wakeman, R. J. and Tarleton, E. S. “Filtration Equipment Selection Modeling and Process Simulation”, Elsevier Advanced Technology, Vol. 1, UK, pp.16, 1999.
    73.末永 弘,「CO2地中貯留のための室内水・CO2二相流特性評価」,電力中央研究所研究報告書,報告書番号N07044,東京,日本, 2007。

    下載圖示 校內:2017-09-03公開
    校外:2017-09-03公開
    QR CODE