簡易檢索 / 詳目顯示

研究生: 鍾昭屏
Zhong, Zhou-Ping
論文名稱: 低功率射頻電機干擾對Wi-Fi頻寬效能影響
Impact of Low Power Radio Frequency Device Interference on the Bandwidth Performance of Wi-Fi System
指導教授: 陳文字
Chen, Wen-Tzu
學位類別: 碩士
Master
系所名稱: 管理學院 - 電信管理研究所
Institute of Telecommunications Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 55
中文關鍵詞: ISM頻段低功率射頻電機吞吐量Iperf同頻干擾
外文關鍵詞: ISM band, Low Power Radio Frequency Device, throughput, Iperf, co-channel interference
相關次數: 點閱:110下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著短距離通訊技術的進步,市面上的低功率射頻電機日益增多,像是智慧開關、藍牙耳機、無線鍵鼠等,此類射頻器材發射電功率皆小於1瓦特,且使用於免執照的2.4GHz頻段。這類射頻器材在頻譜管制上是屬於免執照的方式進行管理,但必須通過型式認證才可擁有與販賣。ISM頻段中,主要的應用是Wi-Fi網路,然而日益增長的低功率射頻電機,可能對Wi-Fi吞吐量存在潛在的干擾危險,因此Wi-Fi與低功率射頻電機間的訊號共存值得我們關注。本論文透過網路測速工具Iperf測試吞吐量以評估Wi-Fi頻寬效能是否會受到低功率射頻電機干擾,並且透過頻譜儀了解到低功率射頻電機於ISM頻段上的存在情形。
    依照不同的電波特性設定實驗場景,依序觀察Wi-Fi、藍牙及無線鍵鼠作為干擾者時,Wi-Fi受害者的吞吐量變化情形,實驗結果以速率下降程度來評估Wi-Fi是否有被低功率射頻電機干擾,並且從頻譜儀上看到訊號的共存情形,在Wi-Fi作為干擾源時,頻譜圖上發現干擾者與被害者的訊號重疊,並在吞吐量測試中發現無論距離或是數量上的測試場景,都會造成至少40%以上的速率下降情形。在藍牙作為干擾源時,可從頻譜圖上發現藍牙訊號分佈於2.4GHz頻段上,並從吞吐量測試中得知,當待測設備為接收端時,無論在設備、距離及數量的測試場景,干擾源造成的速度下降率均小於2%,當待測設備為發射端時,數量增加會導致吞吐量下降。在無線鍵鼠作為干擾源時,可以從頻譜儀上發現無線鍵鼠出現頻率不高,並且在距離及設備的測試場景下,所造成的下降率小於2%。透過本研究實驗發現,Wi-Fi間的同頻干擾仍為影響吞吐量的主要原因,而藍牙及無線鍵鼠等低功率射頻電機對Wi-Fi吞吐量應無干擾之疑慮。

    With the progress of short-range communication technology, there are more and more low power radio frequency devices in the market. This type of radio frequency (RF) equipment has emissive power of less than 1 Watt and is operated at the license-free 2.4 GHz band. This kind of low power devices, however, must satisfy type approval when rolling to the market.
    The primary application in the ISM band is Wi-Fi wireless local area networks. However, the growing quantity of low power radio frequency devices may pose a potential interference to Wi-Fi throughput. Therefore, the coexistence of signals between Wi-Fi and low power radio frequency device deserves our attention. In this thesis, we use the Internet speed measurement tool, iPerf, to measure the throughput to evaluate whether the Wi-Fi bandwidth performance is degraded by low power radio frequency devices. The radio signal of low power radio frequency device in the ISM band is also observed by a spectrum analyzer.
    In the measurements, we set up the experimental scenarios according to different wave characteristics and observe the change of throughput of Wi-Fi victim. Wi-Fi, Bluetooth, and wireless keyboard and mouse are used as interfering signals. Through this study, we can find that the throughput is significant affected by co-channel interference between Wi-Fi devices. The interfering impact of low power radio frequency devices, such as Bluetooth, wireless keyboard and mouse on the Wi-Fi throughput can be neglected.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 論文架構 4 第二章 背景回顧與文獻探討 5 2.1 ISM頻段介紹 5 2.1.1 IEEE 802.11 6 2.1.2 Bluetooth 8 2.1.3 羅技2.4GHz無線技術 9 2.2 低功率射頻電機相關規範 9 2.3 訊號干擾測量工具 10 2.3 文獻探討 11 2.3.1 ISM頻段干擾與同頻干擾文獻 11 2.3.2量化干擾與訊號量測工具相關文獻 12 2.4小結 13 第三章 研究架構 15 3.1實驗架構 15 3.1.1干擾者架構 16 3.1.2受害者架構 16 3.2干擾實驗設計 17 3.2.1 Wi-Fi訊號干擾場景 17 3.2.2藍牙訊號干擾場景 19 3.2.3無線鍵鼠訊號干擾場景 22 3.3軟硬體配置 24 3.3.1干擾者 24 3.3.2受害者 27 3.3.3頻譜儀 32 第四章 研究結果分析 33 4.1頻譜圖及吞吐量數據說明 34 4.2 Wi-Fi干擾實驗結果 35 4.2.1干擾源頻譜圖分析 35 4.2.2不同距離測量數據分析 36 4.2.3不同數量測量數據分析 37 4.3藍牙干擾實驗結果 38 4.3.1干擾源頻譜圖分析 38 4.3.2不同設備測量數據分析 39 4.3.3不同距離(發射端)測量數據分析 41 4.3.4不同距離(接收端)測量數據分析 42 4.3.5不同數量(發射端)測量數據分析 44 4.3.6不同數量(發射端)之頻譜圖分析 46 4.3.7不同數量(接收端)測量數據分析 47 4.4無線鍵鼠干擾實驗結果 48 4.4.1干擾源頻譜圖分析 48 4.4.2不同距離測量數據分析 49 4.4.3不同數量測量數據分析 51 第五章 結論 52 5.1結論 52 5.2研究限制 53 參考文獻 54

    [1] 國家通訊傳播委員會,電信管制射頻器材管理辦法。全國法規資料庫,https://law.moj.gov.tw/,2020.
    [2] https://www.bluetooth.com/bluetooth-resources/2020-bmu/
    [3] https://www.emanuelepagliari.it/2020/10/13/internet-of-things-wireless-communication-protocols/
    [4] IEEE Std.802.11, Wireless LAN Medium Access Control (MAC)and Physical Layer(PHY)Specifications for Wireless Personal Area Networks, 2005.
    [5] https://kknews.cc/zh-tw/tech/n3qjaz8.html
    [6] https://ipwithease.com/bandwidth-vs-throughput/
    [7] 國家通訊傳播委員會,低功率射頻電機技術規範。全國法規資料庫,https://law.moj.gov.tw/,2020.
    [8] C. F. Chiasserini, “Coexistence mechanisms for interference mitigation in the 2.4-GHz ISM band, ” IEEE Transactions on Wireless Communications Vol. 2, Issue: 5, Sept. 2003.
    [9] W.-T. Chen, “Analytic estimation for uplink capacity reduction due to co-channel interference in LTE networks,” Wireless Networks, volume 21, no. 6, pp. 1775-1782, July, 2015.
    [10] N. Golmie, N. Chevrollier and O. RebalaBluetooth, “WLAN coexistence: challenges and solutions, ” IEEE Wireless Communications, Volume 10, Issue 6, Dec. 2003.
    [11] J. Lansford, A. Stephens and R. Nevo, “Wi-Fi (802.11b) and Bluetooth: enabling coexistence, ” IEEE Network, Volume 15, Issue 5, Sep/Oct. 2001.
    [12] Q. Pang and C. M. Leung, “Channel Clustering and Probabilistic Channel Visiting Techniques for WLAN Interference Mitigation in Bluetooth Devices, “IEEE Transactions on Electromagnetic Compatibility, Volume 49, Issue 4, Nov. 2007.
    [13] A. Conti, D. Dardari, G. Pasolini and O. Andrisano, “Bluetooth and IEEE 802.11b coexistence: analytical performance evaluation in fading channels, “IEEE Journal on Selected Areas in Communications, Volume 21, Issue: 2, Feb. 2003)
    [14] I. Ashraf, K. Voulgaris, A. Gkelias, M. Dohler and A. H. Aghvami, “Impact of Interfering Bluetooth Piconets on a Collocated p-Persistent CSMA-Based WLAN, “IEEE Transactions on Vehicular Technology, Volume 58, Issue 9, Nov. 2009.
    [15] S. Valat, B. Vőneki, N. Neufeld, J. Machen, R. Schwemmer and D. H. C. Pérez, “An Evaluation of 100-Gb/s LAN Networks for the LHCb DAQ Upgrade, ” IEEE Transactions on Nuclear Science, Volume 64, Issue 6, June, 2017.
    [16] G. Betta, D. Capriglione, L. Ferrigno and G. Miele, “Influence of Wi-Fi Computer Interfaces on Measurement Apparatuses, ” IEEE Transactions on Instrumentation and Measurement, Volume 59, Issue 12, Dec. 2010.
    [17] 10毫瓦以下藍牙等低功率射頻電機干擾評估研究,委託機關:國家通訊委員會,執行單位:國立成功大學電信管理研究所,主持人:陳文字教授。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE