| 研究生: |
鍾昭屏 Zhong, Zhou-Ping |
|---|---|
| 論文名稱: |
低功率射頻電機干擾對Wi-Fi頻寬效能影響 Impact of Low Power Radio Frequency Device Interference on the Bandwidth Performance of Wi-Fi System |
| 指導教授: |
陳文字
Chen, Wen-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | ISM頻段 、低功率射頻電機 、吞吐量 、Iperf 、同頻干擾 |
| 外文關鍵詞: | ISM band, Low Power Radio Frequency Device, throughput, Iperf, co-channel interference |
| 相關次數: | 點閱:110 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著短距離通訊技術的進步,市面上的低功率射頻電機日益增多,像是智慧開關、藍牙耳機、無線鍵鼠等,此類射頻器材發射電功率皆小於1瓦特,且使用於免執照的2.4GHz頻段。這類射頻器材在頻譜管制上是屬於免執照的方式進行管理,但必須通過型式認證才可擁有與販賣。ISM頻段中,主要的應用是Wi-Fi網路,然而日益增長的低功率射頻電機,可能對Wi-Fi吞吐量存在潛在的干擾危險,因此Wi-Fi與低功率射頻電機間的訊號共存值得我們關注。本論文透過網路測速工具Iperf測試吞吐量以評估Wi-Fi頻寬效能是否會受到低功率射頻電機干擾,並且透過頻譜儀了解到低功率射頻電機於ISM頻段上的存在情形。
依照不同的電波特性設定實驗場景,依序觀察Wi-Fi、藍牙及無線鍵鼠作為干擾者時,Wi-Fi受害者的吞吐量變化情形,實驗結果以速率下降程度來評估Wi-Fi是否有被低功率射頻電機干擾,並且從頻譜儀上看到訊號的共存情形,在Wi-Fi作為干擾源時,頻譜圖上發現干擾者與被害者的訊號重疊,並在吞吐量測試中發現無論距離或是數量上的測試場景,都會造成至少40%以上的速率下降情形。在藍牙作為干擾源時,可從頻譜圖上發現藍牙訊號分佈於2.4GHz頻段上,並從吞吐量測試中得知,當待測設備為接收端時,無論在設備、距離及數量的測試場景,干擾源造成的速度下降率均小於2%,當待測設備為發射端時,數量增加會導致吞吐量下降。在無線鍵鼠作為干擾源時,可以從頻譜儀上發現無線鍵鼠出現頻率不高,並且在距離及設備的測試場景下,所造成的下降率小於2%。透過本研究實驗發現,Wi-Fi間的同頻干擾仍為影響吞吐量的主要原因,而藍牙及無線鍵鼠等低功率射頻電機對Wi-Fi吞吐量應無干擾之疑慮。
With the progress of short-range communication technology, there are more and more low power radio frequency devices in the market. This type of radio frequency (RF) equipment has emissive power of less than 1 Watt and is operated at the license-free 2.4 GHz band. This kind of low power devices, however, must satisfy type approval when rolling to the market.
The primary application in the ISM band is Wi-Fi wireless local area networks. However, the growing quantity of low power radio frequency devices may pose a potential interference to Wi-Fi throughput. Therefore, the coexistence of signals between Wi-Fi and low power radio frequency device deserves our attention. In this thesis, we use the Internet speed measurement tool, iPerf, to measure the throughput to evaluate whether the Wi-Fi bandwidth performance is degraded by low power radio frequency devices. The radio signal of low power radio frequency device in the ISM band is also observed by a spectrum analyzer.
In the measurements, we set up the experimental scenarios according to different wave characteristics and observe the change of throughput of Wi-Fi victim. Wi-Fi, Bluetooth, and wireless keyboard and mouse are used as interfering signals. Through this study, we can find that the throughput is significant affected by co-channel interference between Wi-Fi devices. The interfering impact of low power radio frequency devices, such as Bluetooth, wireless keyboard and mouse on the Wi-Fi throughput can be neglected.
[1] 國家通訊傳播委員會,電信管制射頻器材管理辦法。全國法規資料庫,https://law.moj.gov.tw/,2020.
[2] https://www.bluetooth.com/bluetooth-resources/2020-bmu/
[3] https://www.emanuelepagliari.it/2020/10/13/internet-of-things-wireless-communication-protocols/
[4] IEEE Std.802.11, Wireless LAN Medium Access Control (MAC)and Physical Layer(PHY)Specifications for Wireless Personal Area Networks, 2005.
[5] https://kknews.cc/zh-tw/tech/n3qjaz8.html
[6] https://ipwithease.com/bandwidth-vs-throughput/
[7] 國家通訊傳播委員會,低功率射頻電機技術規範。全國法規資料庫,https://law.moj.gov.tw/,2020.
[8] C. F. Chiasserini, “Coexistence mechanisms for interference mitigation in the 2.4-GHz ISM band, ” IEEE Transactions on Wireless Communications Vol. 2, Issue: 5, Sept. 2003.
[9] W.-T. Chen, “Analytic estimation for uplink capacity reduction due to co-channel interference in LTE networks,” Wireless Networks, volume 21, no. 6, pp. 1775-1782, July, 2015.
[10] N. Golmie, N. Chevrollier and O. RebalaBluetooth, “WLAN coexistence: challenges and solutions, ” IEEE Wireless Communications, Volume 10, Issue 6, Dec. 2003.
[11] J. Lansford, A. Stephens and R. Nevo, “Wi-Fi (802.11b) and Bluetooth: enabling coexistence, ” IEEE Network, Volume 15, Issue 5, Sep/Oct. 2001.
[12] Q. Pang and C. M. Leung, “Channel Clustering and Probabilistic Channel Visiting Techniques for WLAN Interference Mitigation in Bluetooth Devices, “IEEE Transactions on Electromagnetic Compatibility, Volume 49, Issue 4, Nov. 2007.
[13] A. Conti, D. Dardari, G. Pasolini and O. Andrisano, “Bluetooth and IEEE 802.11b coexistence: analytical performance evaluation in fading channels, “IEEE Journal on Selected Areas in Communications, Volume 21, Issue: 2, Feb. 2003)
[14] I. Ashraf, K. Voulgaris, A. Gkelias, M. Dohler and A. H. Aghvami, “Impact of Interfering Bluetooth Piconets on a Collocated p-Persistent CSMA-Based WLAN, “IEEE Transactions on Vehicular Technology, Volume 58, Issue 9, Nov. 2009.
[15] S. Valat, B. Vőneki, N. Neufeld, J. Machen, R. Schwemmer and D. H. C. Pérez, “An Evaluation of 100-Gb/s LAN Networks for the LHCb DAQ Upgrade, ” IEEE Transactions on Nuclear Science, Volume 64, Issue 6, June, 2017.
[16] G. Betta, D. Capriglione, L. Ferrigno and G. Miele, “Influence of Wi-Fi Computer Interfaces on Measurement Apparatuses, ” IEEE Transactions on Instrumentation and Measurement, Volume 59, Issue 12, Dec. 2010.
[17] 10毫瓦以下藍牙等低功率射頻電機干擾評估研究,委託機關:國家通訊委員會,執行單位:國立成功大學電信管理研究所,主持人:陳文字教授。