| 研究生: |
李彰祐 Lee, Jang-You |
|---|---|
| 論文名稱: |
二維電磁感應加熱之熱傳分析 2-D heat transfer analysis for electro-magnetic induction heating |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 電磁感應加熱 、雙金屬料管 |
| 外文關鍵詞: | induction heating, bi-metallic tube, electro-magnetic |
| 相關次數: | 點閱:111 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用電磁學、熱傳學等相關學理,建立合適的電磁場與溫度場模擬模型,結合數值分析的方法分析雙金屬料管的感應加熱製程中的三維溫度場變化,探討其電磁現象如:磁通密度(magnIetic flux density vector)、磁位能(magnetic vector potential)、電場強度(electric field vector)和感應電流(eddy current),並討論加熱工件的物理特性對電磁感應加熱影響,如:熱傳導係數(thermal conductivity)、比熱(specific heat)、密度(density)、電阻係數(resistivity)和相對導磁係數(relative permeability)。
在溫度模擬上,比較中鋼公司所提供的三組實驗數據:Pipe A (內徑29(mm),外徑95(mm),長度1000(mm))、Pipe B (內徑39(mm),外徑110(mm),長度1120(mm))、Pipe C (內徑47(mm),外徑131(mm),長度1450(mm)),對其內外壁溫度表現和數值模擬的溫度變化作相互比對,其整體相對誤差約為15%。
另外,改變了一些變數,如:輸入電壓的增減、交變電流頻率的改變、加熱線圈和加熱工件的間距改變、失磁後相對導磁係數的大小設定等,畫出溫度對時間變化圖,加以討論分析。
The study utilizing electro-magneticism and heat transfer is to create a proper simulation model of electro-magnetic field and temperature field. To discuss the numerical analysis for bi-metallic tube and the 2-D temperature difference during the process of induction heating. This paper confers with the electro-magnetic phenomenon like magnetic flux density vector, magnetic vector potential, electric field vector and eddy current, and also discusses the physic characteristic that influences the temperature like thermal conductivity, specific heat, density, resistivity and relative permeability.
The paper uses three different dimensions of metallic tubes for Pipe A, Pipe B and Pipe C, respectively. It compared the temperature of bi-metallic tube between the experimental data and simulation results to certify correction of simulation scheme.
Finally, different parameters such as input voltage, current frequency, distance between coil and workpiece, and the relative permeability of workpiece were discussed in the paper.
1. Davies, E. J., and Simpson, P. G., “Induction heating handbook” , Mcgraw-Hill Book company Ltd, London, 1995.
2. Zinn, S., and Semiatin, S. L., “Element of induction heating-design, control, and application” , Electric power research institute , Inc. palo.Alto, U.S.A., 1997.
3. Davies, E. J., “Depth of penetration in electroheating” , Elektrowarme International, 46(B1), 29-35, 1998.
4. C. P. Steinmetz, “On the law of hysteresis,” AIEE Trans., pp. 3–64, 1892.
5. Aniserowicz, K., Skorek, A., Cossette, C., and Zaremba, M.B., “A new concept for finite element simulation of induction heating of steel cylinders”, IEEE Transactions On Industry Applications, Vol. 33, No. 4, 1997.
6. T., W., Preston, “An economic solution for 3D coupled electromagnetic and thermal eddy current problems”, I IEEE Transactions On Magnetics, Vol. 28, No. 2, 1992.
7. Nerg, J., and Partanen, J., “A simplified FEM based calculation model for 3-D induction heating problems using surface impedance formulations”, IEEE Transactions On Magnetics, Vol. 37, No. 5, 2001.
8. Urbanek, P., Skorek, A., and Zaremba, M.B., “Magnetic flux and temperature analysis in induction heated steel cylinder”, IEEE Transactions On Magnetics, Vol. 30, No. 5, 1994.
9. Bukanin, V.,, Dughiero, F., Lupi, S., Nemkov, V., and Siega, P., “3D-FEM Simulation of transverse-flux induction heaters”, IEEE Transactions On Magnetics, Vol. 31, No. 3, 1995.
10.Sadeghipour K., Dopkin J. A., “Acomputer aided finite element / experimental analysis of induction heating process of steel”, Computers In Industry, Vol. 28, pp. 195-205, 1995.
11.Chaboudez, C., Clain, D., Glardon, R., Mari, D., Rappaz, J., and Swierkosz M., “Numerical modeling in induction heating for axisymmetric geometries”, IEEE Transactions On Magnetics, Vol. 33, No. I , 1997.
12.李育芸,“ 感應加熱應用於模具表面快速加熱之研究”,私立中原大學機械工程學系碩士論文,1992。
13.Kang, C.G., Seo, P.K., and Jung, H.K., “Numerical analysis by new proposed coil design method in induction heating process for semi-solid forming and its experimental verification with globalization evaluation, Materials Science and Engineering”, A341, pp, 121-138, 2003.
14.Chen S. C., Peng, H. S., Chang, J. A., Jong, W. R., “Simulations and verifications of induction heating on a mold plate”, Int. Comm. Heat Mass Transfer, Vol. 31, No. 7, pp. 971-980, 2004.
15.Tudbury, C. A., “Electromagnetics of induction heating”, IEEE Trans. Mag-10, pp. 694-697, 1974.
16.Wang, Z., Yang, X., Wang, Y., and Yan, W., “Eddy current and temperature field computation in transverse flux induction heating equipment for galvanizing line”, Transactions On Magnetics, Vol. 37, No. 5, 2001.
17.Runde M., Magnusson, N., “Induction heating of aluminium billets using superconducting coils”, Physica, C 372–376, pp. 1339-1341, 2002.
18.Jang, S.M., Cho, S.K., Lee, S.H., Cho, H.W., and Park, H.C.,“Thermal analysis of induction heating roll with heat pipes”, IEEE Transactions On Magnetics, Vol. 39, NO. 5, 2003.
19.K., Preis, “A contribution to eddy current calculations in plane and axisymmetric multiconductor systems”, IEEE Transactions On Magnetics, Vol. 19, NO. 6, 1983.
20.Ph., Mass, B., Morel, Th. Breville, “A finite element prediction correction scheme for magneto-thermal coupled problem during curie transition”, IEEE Transactions On Magnetics, Vol. 21, NO. 5, 1985.
21.A., Mhlbauer, A., Muižnieks, H.-J., Lemann, “The calculation of 3D high frequency electromagnetic fields during induction heating using the BEM”, IEEE Transactions On Magnetics, Vol. 29, NO. 2, 1993.
22.CFD-ACE(U),CFD Research Corporation, Alabama, USA, 2003.