| 研究生: |
劉力瑋 Liu, Li-Wei |
|---|---|
| 論文名稱: |
具穿孔三角翼渦流產生器作用於散熱鰭片之最佳穿孔直徑與擺放位置之設計 Optimal Design on Perforation Diameter and Position of Perforated Delta Winglet Vortex Generators for Heat Sinks |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 穿孔之渦流產生器 、反算設計問題 、最佳化設計 |
| 外文關鍵詞: | Perforated Vortex Generator, Inverse Design Problem, Optimization Design |
| 相關次數: | 點閱:124 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以散熱鰭片上安裝穿孔之三角翼渦流產生器為研究基礎,利用商業套裝軟體CFD-ACE+建立散熱鰭片及渦流產生器模型,並透過拉凡格式法(Levenberg-Marquardt Method)最佳化渦流產生器之最佳穿孔直徑與擺放位置,期望在控制穿孔直徑與擺放位置之下,得到最低之底板平均溫度。
本研究分別使用柱型與平板型散熱鰭片作為設計模型,並設計穿孔之三角翼渦流產生器安裝在鰭片兩側,使用反算設計問題預測最佳參數,分析不同鰭片與不同入口速度下渦流產生器最佳化結果。Design A為柱型散熱鰭片並搭配入口速度為Re = 10000 (1.2 m/s)、Re = 15000 (1.8 m/s)、Re = 20000 (2.4 m/s),Design B為平板型散熱鰭片並搭配入口速度為Re = 10000 (1.2 m/s)、Re = 15000 (1.8 m/s)、Re = 20000 (2.4 m/s)。兩種案例都在鰭片兩側加裝穿孔之渦流產生器,以降低散熱鰭片之底板平均溫度為目標,並求得在不同案例之下的穿孔直徑與擺放位置。
分析之後最終結果顯示,散熱鰭片的底板平均溫度在最佳化之後的確能夠降低,柱型鰭片在Re = 10000、15000及20000之三種不同入口速度之下,使用最佳設計之渦流產生器可比有放置渦流產生器且無穿孔的底板平均溫度,降低約11.2%、6.9% 及5.0%;平板型鰭片在三種不同入口速度之下,使用最佳設計之渦流產生器比有放置渦流產生器且無穿孔的底板平均溫度,可降低約12.6%、2.5%及2.0%。吾人同時也探討在兩種案例之下,有放置且無穿孔之VG與最佳設計之VG比較熱性能係數(Thermal performance factor)的差異,在Design A的案例之下,分別提升約28%、28%及26%,在Design B的案例之下,分別提升約22%、5%及16%,結果顯示在經由穿孔及位置設計之後,其底板均溫與熱性能係數改善效果顯著。
最後本研究對兩種案例進行實驗,使用紅外線熱像儀與壓差計測量實體散熱模型的溫度及壓力,並且與CFD-ACE+ 模擬計算的鰭片溫度進行交叉比對,能夠證明模擬結果與實驗結果相當一致,因此可證明本研究之可信度。
An optimal design problem for estimating the design variables of a delta winglet vortex generator (VG), i.e., its position, attack angle and perforated radius, was investigated in this work to enhance the heat dissipation performance of pin-fin and plate-fin heat sinks using the commercial code CFD-ACE+ and the Levenberg-Marquardt Method (LMM). The role of VGs is to restructure the flow pattern of the inlet air and thus to enhance cooling. Three inlet air velocities with Reynolds numbers Re = 10000, 15000 and 20000 were considered, and the optimization algorithm with LMM was chosen to estimate the optimal design variables of the VGs to yield the minimum bottom average temperature of the heat sinks. The results revealed that the gap between the VG and the heat sink (i.e., position), attack angle and the perforated radius of the VG all became larger as Re increased to improve the cooling ability of the heat sinks. In addition, the pressure drop of the heat sink can be significantly reduced due to the perforation of the VGs; as a result, the thermal performance factor of the heat sink is significantly improved. Finally, the designed optimal VGs were installed on both pin-fin and plate-fin heat sinks, and experimental verifications were conducted. The results indicated that the measured temperatures on the bottom plate of the heat sinks are very close to the computed temperatures. In addition, the base plate temperatures of the heat sink using the designed optimal VGs are always lower than those using the original design VGs for various Re, which implies that the heat dissipation performance of the heat sink using optimal VGs is enhanced.
1. C.H. Huang, J.J. Lu, and H. Ay, "A three-dimensional heat sink module design problem with experimental verification," International Journal of Heat and Mass Transfer, vol. 54, no. 7-8, pp. 1482-1492, 2011.
2. D.W. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," Journal of the society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431-441, 1963.
3. CFD-ACE+ user’s manual, ESI-CFD Inc., 2005.
4. J.Y. Jang, M.C. Wu, and W.J. Chang, "Numerical and experimental studies of threedimensional plate-fin and tube heat exchangers," International Journal of Heat and Mass Transfer, vol. 39, no. 14, pp. 3057-3066, 1996.
5. H. Ay, J. Jang, and J.N. Yeh, "Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography," International Journal of Heat and Mass Transfer, vol. 45, no. 20, pp. 4069-4078, 2002.
6. J.Y. Jang and L.K. Chen, "Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger," International Journal of Heat and Mass Transfer, vol. 40, no. 16, pp. 3981-3990, 1997.
7. C.C. Wang, J.Y. Chang, and N.F. Chiou, "Effects of waffle height on the air-side performance of wavy fin-and-tube heat exchangers," Heat Transfer Engineering, vol. 20, no. 3, pp. 45-56, 1999.
8. C.C. Wang, J. Jang, and N. Chiou, "A heat transfer and friction correlation for wavy fin-and-tube heat exchangers," International Journal of Heat and Mass Transfer, vol. 42, no. 10, pp. 1919-1924, 1999.
9. H.Y. Li and S.M. Chao, "Measurement of performance of plate-fin heat sinks with cross flow cooling," International Journal of Heat and Mass Transfer, vol. 52, no. 13-14, pp. 2949-2955, 2009.
10. H.Y. Li, M.H. Chiang, C.I. Lee, and W.J. Yang, "Thermal performance of plate-fin vapor chamber heat sinks," International Communications in Heat and Mass Transfer, vol. 37, no. 7, pp. 731-738, 2010.
11. M. Fiebig, P. Kallweit, N. Mitra, and S. Tiggelbeck, "Heat transfer enhancement and drag by longitudinal vortex generators in channel flow," Experimental Thermal and Fluid Science, vol. 4, no. 1, pp. 103-114, 1991.
12. K. Torii, K. Kwak, and K. Nishino, "Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers," International Journal of Heat and Mass Transfer, vol. 45, no. 18, pp. 3795-3801, 2002.
13. H.Y. Li, C.L. Chen, S.M. Chao, and G.F. Liang, "Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators," International Journal of Heat and Mass Transfer, vol. 67, pp. 666-677, 2013.
14. H.Y. Li, W.R. Liao, T.Y. Li, and Y.Z. Chang, "Application of vortex generators to heat transfer enhancement of a pin-fin heat sink," International Journal of Heat and Mass Transfer, vol. 112, pp. 940-949, 2017.
15. C.H. Huang and P.C. Chiang, "An inverse study to design the optimal shape and position for delta winglet vortex generators of pin-fin heat sinks," International Journal of Thermal Sciences, vol. 109, pp. 374-385, 2016.
16. K. Boukhadia, H. Ameur, D. Sahel, and M. Bozit, "Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger," International Journal of Thermal Sciences, vol. 126, pp. 172-180, 2018.
17. Z. Han, Z. Xu, and J. Wang, "Numerical simulation on heat transfer characteristics of rectangular vortex generators with a hole," International Journal of Heat and Mass Transfer, vol. 126, pp. 993-1001, 2018.
18. J. Modi, N. A. Kalel, and M. K. Rathod, "Thermal performance augmentation of fin-and-tube heat exchanger using rectangular winglet vortex generators having circular punched holes," International Journal of Heat and Mass Transfer, vol. 158, p. 119724, 2020.
19. S. Skullong, P. Promthaisong, P. Promvonge, C. Thianpong, and M. Pimsarn, "Thermal performance in solar air heater with perforated-winglet-type vortex generator," Solar Energy, vol. 170, pp. 1101-1117, 2018.
20. C.H. Huang and J.W. Lin, "Optimal gas channel shape design for a serpentine PEMFC: Theoretical and experimental studies," Journal of the Electrochemical Society, vol. 156, no. 1, p. B178, 2008.
21. C.H. Huang and W.L. Chang, "An inverse design method for optimizing design parameters of heat sink modules with encapsulated chip," Applied thermal engineering, vol. 40, pp. 216-226, 2012.
22. C.H. Huang and Y.H. Chen, "An impingement heat sink module design problem in determining simultaneously the optimal non-uniform fin widths and heights," International Journal of Heat and Mass Transfer, vol. 73, pp. 627-633, 2014.