簡易檢索 / 詳目顯示

研究生: 林阡鈺
Lin, Chien-Yu
論文名稱: 生物可降解之鎂合金鉚釘應用於肩部旋轉肌修復的縫合固定技術:體外及體內測試
In Vitro and in Vivo Study of a Biodegradable Magnesium Anchor for Suture Anchor Technique of Rotator Cuff Repair
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 60
中文關鍵詞: 肩部旋轉肌撕裂縫合固定技術生物可降解鎂合金鉚釘
外文關鍵詞: rotator cuff tear, suture anchor technique, biodegradable, magnesium anchor
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著年紀的增加,肩部功能障礙(Shoulder disorder)是很常見的肌肉骨骼疾病,尤其旋轉肌破裂(Rotator cuff tear)影響著龐大的病患人口,造成患者肩部虛弱無力、失去功能及反覆性的疼痛,在旋轉肌修復的手術中,縫合固定技術(Suture anchor technique)是其中一種主要修復方式,將穿有縫線(Suture)的鉚釘(Anchor)釘入肱骨大結後,再使縫線穿過破裂的肌腱,將肌腱拉回原本在骨頭上的附著處並固定之,藉由增加肌腱與骨頭的接觸面積,促進旋轉肌之再生及癒合。
    儘管縫合固定技術能為病患提供很強的支撐力,於臨床上的使用率高,但經由手術後病患肌腱仍有很大的機率再次破裂,在縫線固定中使用之鉚釘材料,原本是以鈦合金為主,但近年來針對旋轉肌的術後復原狀況多以核磁共振造影(MRI)的方式來進行檢視,由於術後不會將鉚釘取出,鈦合金又不會在人體內降解,而金屬會影響MRI在判讀上的準確性,因此聚合物逐漸取代了鈦合金的使用,然而聚合物的力學強度仍然不及金屬,且聚合物在人體內的降解過程會產生酸性微環境,將帶來組織發炎等症狀的疑慮,不利於組織的癒合。
    鎂合金具備良好的生物相容性,又擁有與骨質相近的輕量和高強度力學性質,近年來逐漸被視為新一代生物可降解型醫療用植入金屬,本研究使用開發之鎂鋅鋯合金ZK50為原料,以圓片先執行鎂合金於體外(in vitro)的抗腐蝕性測試、細胞毒性測試及細胞貼附測試,初步結果證實了試片經由氟化處理能有效地提升鎂合金的抗腐蝕性以及生物相容性。因此本研究接著以ZK50為原材加工成鉚釘,經由氟化處理後的鎂鉚釘與現有鈦合金鉚釘作為對照,進行體內(in vivo)測試,14隻活體大白兔隨機分為兩組: 鎂合金組及鈦合金組,於各組的每隻兔子雙側肩部執行旋轉肌斷裂的縫合固定手術,在左右兩邊的肱骨大結各植入一支鉚釘並縫合肌腱,經由電腦斷層掃描和組織切片分析,來觀察鎂合金植體的在術後4週(n=6)和12週(n=8)的降解及組織癒合情況並與鈦合金組做比較;另一方面,本研究於已犧牲的大白兔肩膀分別植入鎂合金和鈦合金鉚釘進行拉拔測試(n=5),對照兩者在活體內的力學強度。
    經由體內測試,植入大白兔體內的鎂合金鉚釘有效的支撐住斷裂肌腱的拉力,肌腱成功地與骨頭接合,同時,經由電腦斷層驗證了植體周遭組織良好的附著其上並隨著鎂合金的降解生成新生骨,拉拔測試證實了鎂合金與鈦合金相比能提供相媲美的力學性質。本研究是第一個發展出鎂合金在縫合固定技術上的應用,並且成功證實了鎂鉚釘在肩部旋轉肌修復的可行性,期能開發出新一代鎂製縫合固定鉚釘,對縫合固定材料於旋轉肌的修復上有所改善。

    Suture anchor technique is one of the most commonly used surgical treatment of rotator cuff tear. The high retearing rate of repaired rotator cuff by anchor made of titanium alloy due to consistent foreign body reaction or polymers due to inferior mechanical strength and osteolysis concern remains a challenge in arthroscopic rotator cuff repair. Biodegradable material is the new generation of biomaterials served as the tissue integration scaffold for high regenerated tissue. Therefore, examination of a degradable magnesium (Mg) anchor is the aim of this study.
    Recently, biodegradable magnesium alloy has attracted great attention because it has excellent biocompatibility, osteointegration ability and close mechanical properties to natural bone. However, the corrosion behavior of these metals in-vivo remains challenging.
    In this study, a protective magnesium fluoride (MgF2) coating was deposited on the surface of Mg-5.0Zn-0.5Zr (ZK50) alloy. After a series of material analysis, it demonstrated its good corrosion resistance and the cell viability tests and cell adhesion tests showed that MgF2-coating could stimulate osteoblastic cell proliferation. So, the MgF2-coated ZK50 anchors were processed and used on rotator cuff repair of rabbits’ shoulders. Non-degradable titanium (Ti) anchors were used as control group in this approach. 14 New Zealand white rabbits were randomly divided into 2 groups: Mg group and Ti group, and the release of the supraspinatus tendon was performed at the base of the tendon insertion area. Anchor was inserted into greater tuberosity, then the detached tendon was repaired by Mason-Allen method. CT scans and histological analysis were performed at 4-week(n=6) and 12-week(n=8) post-operation to observe the biocompatibility of the implants and the change of degradation products. On the other hand, pullout tests (n=5) were conducted on euthanized rabbits’ shoulders to compare the initial fixation provided by suture anchor for the torn tendon.
    The results showed good tendon-healing between supraspinatus and humeral head of rabbits with the implantation of MgF2-coated ZK50 anchors. The surrounding tissues of the implants could absorb the degradation products of the Mg anchors and the new bone replaced the space successfully. Furthermore, the strength provided by Mg anchor could be compatible to Ti anchor during the pullout tests, indicating that Mg anchor has sufficient mechanical strength. In conclusion, this is the first study that proved the feasibility of Mg anchors applied on rotator cuff repair. These results confirmed that MgF2-coated ZK50 anchor can degrade at proper time during tendon-bone healing and potentially offer a novel material for next-generation anchor application.

    中文摘要 I Abstract III 誌謝 V Table of contents VII List of tables X List of figures XI List of abbreviations XIII Chapter 1: Introduction 1 1.1 Rotator cuff tear 1 1.2 Suture anchor technique 2 1.3 Biodegradable orthopaedic implants 4 1.4 Magnesium alloy 7 1.5 Magnesium fluoride (MgF2) conversion coating 10 Chapter 2: Materials and Methods 12 2.1 Experimental equipment and materials 12 2.1.1 Magnesium specimens and magnesium anchors 12 2.1.2 Experimental materials 12 2.1.3 Experimental equipment 13 2.2 Experimental methods 14 2.2.1 MgF2 coating 14 2.3 Experimental setup 15 2.4 Surface morphology and chemical composition of materials 16 2.5 Corrosion resistance analysis 16 2.5.1 Electrochemical tests 16 2.5.2 Hydrogen releasement tests 17 2.6 Cell Culture 17 2.7 In vitro tests 17 2.7.1 Cytotoxicity tests 17 2.7.2 Cell adhesion tests 18 2.8 In vivo tests 19 2.8.1 Animal model 19 2.8.2 Surgery 19 2.8.3 Micro computed tomography (Micro CT) analysis 21 2.8.4 Computed tomography (CT) reconstruction 22 2.8.5 Histological analysis 22 2.8.6 Pullout tests 22 Chapter 3: Results 25 3.1 Chemical composition of materials 25 3.2 Corrosion resistance analysis 25 3.2.1 Electrochemical tests 25 3.2.2 Hydrogen releasement tests 26 3.3 In vitro tests 27 3.3.1 Cytotoxicity tests 27 3.3.2 Cell adhesion tests 28 3.4 In vivo tests 30 3.4.1 Micro CT analysis 30 3.4.2 Computed tomography reconstruction 31 3.4.3 Histological analysis 40 3.4.4 Pullout tests 44 Chapter 4: Discussion 46 4.1 Effects of MgF2 coating on corrosion behavior of ZK50 specimens in vitro 46 4.2 Effects of MgF2 coating on biological response of ZK50 specimens in vitro 48 4.3 Bioabsorbable magnesium anchors for rotator cuff repair: The performance of the degradation of MgF2-coated ZK50 anchor and tendon-bone healing in vivo 50 4.4 Bioabsorbable magnesium anchors for rotator cuff repair: The biomechanical evaluation of suture anchor 52 Conclusion 54 References 55

    1. Yadav, H., Nho, S., Romeo, A., & MacGillivray, J. D. (2009). Rotator cuff tears: pathology and repair. [Review]. Knee Surgery Sports Traumatology Arthroscopy, 17(4), 409-421, doi:10.1007/s00167-008-0686-8.
    2. MacDermid, J. C., Holtby, R., Razmjou, H., & Bryant, D. (2006). All-arthroscopic versus mini-open repair of small or moderate-sized rotator cuff tears: a protocol for a randomized trial [NCT00128076]. [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't]. BMC Musculoskeletal Disorders, 7, 25, doi:10.1186/1471-2474-7-25.
    3. Cho, C. H., Lee, S. M., Lee, Y. K., & Shin, H. K. (2014). Mini-open suture bridge repair with porcine dermal patch augmentation for massive rotator cuff tear: surgical technique and preliminary results. Clinics in Orthopedic Surgery, 6(3), 329-335, doi:10.4055/cios.2014.6.3.329.
    4. Lafosse, L., Brzoska, R., Toussaint, B., & Gobezie, R. (2008). The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. Surgical technique. Journal of Bone and Joint Surgery. American volume, 90 Suppl 2 Pt 2, 275-286, doi:10.2106/JBJS.H.00388.
    5. Burkhart, S. S., Diaz Pagan, J. L., Wirth, M. A., & Athanasiou, K. A. (1997). Cyclic loading of anchor-based rotator cuff repairs: confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. [Comparative Study]. Arthroscopy, 13(6), 720-724.
    6. Barber, F. A., & Herbert, M. A. (2013). Cyclic loading biomechanical analysis of the pullout strengths of rotator cuff and glenoid anchors: 2013 update. [Research Support, Non-U.S. Gov't]. Arthroscopy, 29(5), 832-844, doi:10.1016/j.arthro.2013.01.028.
    7. Haneveld, H., Hug, K., Diederichs, G., Scheibel, M., & Gerhardt, C. (2013). Arthroscopic double-row repair of the rotator cuff: a comparison of bio-absorbable and non-resorbable anchors regarding osseous reaction. Knee Surgery Sports Traumatology Arthroscopy, 21(7), 1647-1654, doi:10.1007/s00167-013-2510-3.
    8. Franceschi, F., Ruzzini, L., Longo, U. G., Martina, F. M., Zobel, B. B., Maffulli, N., et al. (2007). Equivalent clinical results of arthroscopic single-row and double-row suture anchor repair for rotator cuff tears: a randomized controlled trial. [Randomized Controlled Trial]. American Journal of Sports Medicine, 35(8), 1254-1260, doi:10.1177/0363546507302218.
    9. Koh, K. H., Kang, K. C., Lim, T. K., Shon, M. S., & Yoo, J. C. (2011). Prospective randomized clinical trial of single- versus double-row suture anchor repair in 2- to 4-cm rotator cuff tears: clinical and magnetic resonance imaging results. [Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't]. Arthroscopy, 27(4), 453-462, doi:10.1016/j.arthro.2010.11.059.
    10. Lee, H. I., Shon, M. S., Koh, K. H., Lim, T. K., Heo, J., & Yoo, J. C. (2014). Clinical and radiologic results of arthroscopic biceps tenodesis with suture anchor in the setting of rotator cuff tear. [Clinical Trial]. Journal of Shoulder and Elbow Surgery, 23(3), e53-60, doi:10.1016/j.jse.2013.06.004.
    11. Tan, R. K. (1998). A review of the role of magnetic resonance imaging in the evaluation of shoulder impingement syndrome and rotator cuff tendon tears. [Review]. Annals of the Academy of Medicine, Singapore, 27(2), 243-247.
    12. Spoliti, M. (2007). Glenoid osteolysis after arthroscopic labrum repair with a bioabsorbable suture anchor. [Case Reports]. Acta Orthopaedic Belgica, 73(1), 107-110.
    13. Nusselt, T., Freche, S., Klinger, H. M., & Baums, M. H. (2010). Intraosseous foreign body granuloma in rotator cuff repair with bioabsorbable suture anchor. [Case Reports]. Archives of Orthopaedic and Trauma Surgery, 130(8), 1037-1040, doi:10.1007/s00402-010-1125-0.
    14. Farraro, K. F., Kim, K. E., Woo, S. L., Flowers, J. R., & McCullough, M. B. (2014). Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Review]. Journal of Biomechanics, 47(9), 1979-1986, doi:10.1016/j.jbiomech.2013.12.003.
    15. Tan, L., Wang, Q., Lin, X., Wan, P., Zhang, G., Zhang, Q., et al. (2014). Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. [Research Support, Non-U.S. Gov't]. Acta Biomaterialia, 10(5), 2333-2340, doi:10.1016/j.actbio.2013.12.020.
    16. Zheng, Y. F., Gu, X. N., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering R-Reports, 77, 1-34, doi:10.1016/j.mser.2014.01.001.
    17. Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: a review. [Research Support, Non-U.S. Gov't Review]. Biomaterials, 27(9), 1728-1734, doi:10.1016/j.biomaterials.2005.10.003.
    18. Maguire, M. E., & Cowan, J. A. (2002). Magnesium chemistry and biochemistry. [Review]. Biometals, 15(3), 203-210.
    19. Janning, C., Willbold, E., Vogt, C., Nellesen, J., Meyer-Lindenberg, A., Windhagen, H., et al. (2010). Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomaterialia, 6(5), 1861-1868, doi:10.1016/j.actbio.2009.12.037.
    20. Gu, X. N., Zheng, W., Cheng, Y., & Zheng, Y. F. (2009). A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate. [Research Support, Non-U.S. Gov't]. Acta Biomaterialia, 5(7), 2790-2799, doi:10.1016/j.actbio.2009.01.048.
    21. Ma, N., Chen, Y. M., & Yang, B. C. (2014). Magnesium metal-A potential biomaterial with antibone cancer properties. Journal of Biomedical Materials Research Part A, 102(8), 2644-2651, doi:10.1002/jbm.a.34933.
    22. Nan, M., Yangmei, C., & Bangcheng, Y. (2014). Magnesium metal--a potential biomaterial with antibone cancer properties. [Research Support, Non-U.S. Gov't]. Journal of Biomedical Materials Research Part A, 102(8), 2644-2651, doi:10.1002/jbm.a.34933.
    23. Song, Y., Zhang, S., Li, J., Zhao, C., & Zhang, X. (2010). Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. [Research Support, Non-U.S. Gov't]. Acta Biomaterialia, 6(5), 1736-1742, doi:10.1016/j.actbio.2009.12.020.
    24. Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., et al. (2005). In vivo corrosion of four magnesium alloys and the associated bone response. [Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't]. Biomaterials, 26(17), 3557-3563, doi:10.1016/j.biomaterials.2004.09.049.
    25. Witte, F., Fischer, J., Nellesen, J., Crostack, H. A., Kaese, V., Pisch, A., et al. (2006). In vitro and in vivo corrosion measurements of magnesium alloys. [Evaluation Studies Research Support, Non-U.S. Gov't]. Biomaterials, 27(7), 1013-1018, doi:10.1016/j.biomaterials.2005.07.037.
    26. Huan, Z. G., Leeflang, M. A., Zhou, J., Fratila-Apachitei, L. E., & Duszczyk, J. (2010). In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. Journal of Materials Science: Materials in Medicine, 21(9), 2623-2635, doi:10.1007/s10856-010-4111-8.
    27. You, Q., Yu, H., Wang, H., Pan, Y., & Chen, C. (2014). Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy. [Research Support, Non-U.S. Gov't]. Biointerphases, 9(3), 031009, doi:10.1116/1.4889734.
    28. Pan, Y. K., Chen, C. Z., Wang, D. G., & Yu, X. (2012). Microstructure and biological properties of micro-arc oxidation coatings on ZK60 magnesium alloy. [Research Support, Non-U.S. Gov't]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(6), 1574-1586, doi:10.1002/jbm.b.32726.
    29. Cheng, Y. L., Qin, T. W., Wang, H. M., & Zhang, Z. (2009). Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. Transactions of Nonferrous Metals Society of China, 19(3), 517-524, doi:10.1016/S1003-6326(08)60305-2.
    30. Guan, R. G., Johnson, I., Cui, T., Zhao, T., Zhao, Z. Y., Li, X., et al. (2012). Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity. Journal of Biomedical Materials Research Part A, 100A(4), 999-1015, doi:10.1002/jbm.a.34042.
    31. Li, B., Zhang, K. G., Yang, W. Z., Yin, X. S., & Liu, Y. (2016). Enhanced corrosion resistance of HA/CaTiO3/TiO2/PLA coated AZ31 alloy. Journal of the Taiwan Institute of Chemical Engineers, 59, 465-473, doi:10.1016/j.jtice.2015.07.028.
    32. Song, Y., Zhang, S. X., Li, J. A., Zhao, C. L., & Zhang, X. N. (2010). Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior. Acta Biomaterialia, 6(5), 1736-1742, doi:10.1016/j.actbio.2009.12.020.
    33. Su, Y. C., Li, G. Y., & Lian, J. S. (2012). A Chemical Conversion Hydroxyapatite Coating on AZ60 Magnesium Alloy and Its Electrochemical Corrosion Behaviour. International Journal of Electrochemical Science, 7(11), 11497-11511.
    34. Su, Y. C., Niu, L. Y., Lu, Y. B., Lian, J. S., & Li, G. Y. (2013). Preparation and Corrosion Behavior of Calcium Phosphate and Hydroxyapatite Conversion Coatings on AM60 Magnesium Alloy. Journal of the Electrochemical Society, 160(11), C536-C541, doi:10.1149/2.036311jes.
    35. Zhao, H., Cai, S., Niu, S. X., Zhang, R. Y., Wu, X. D., Xu, G. H., et al. (2015). The influence of alkali pretreatments of AZ31 magnesium alloys on bonding of bioglass-ceramic coatings and corrosion resistance for biomedical applications. Ceramics International, 41(3), 4590-4600, doi:10.1016/j.ceramint.2014.12.002.
    36. Guan, R. G., Johnson, I., Cui, T., Zhao, T., Zhao, Z. Y., Li, X., et al. (2012). Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. Journal of Biomedical Materials Research Part A, 100(4), 999-1015, doi:10.1002/jbm.a.34042.
    37. Harmata, A. J., Ward, C. L., Zienkiewicz, K. J., Wenke, J. C., & Guelcher, S. A. (2014). Investigating the Effects of Surface-Initiated Polymerization of epsilon-Caprolactone to Bioactive Glass Particles on the Mechanical Properties of Settable Polymer/Ceramic Composites. Journal of Materials Research, 29(20), 2398-2407, doi:10.1557/jmr.2014.254.
    38. Golshirazi, A., Kharaziha, M., & Golozar, M. A. (2017). Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy. Carbohydrate Polymers, 167, 185-195, doi:10.1016/j.carbpol.2017.03.025.
    39. Lee, H. P., Lin, D. J., & Yeh, M. L. (2017). Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity. Materials (Basel), 10(7), doi:10.3390/ma10070696.
    40. Chiu, K. Y., Wong, M. H., Cheng, F. T., & Man, H. C. (2007). Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surface and Coatings Technology, 202(3), 590-598, doi:10.1016/j.surfcoat.2007.06.035.
    41. Jo, J. H., Kang, B. G., Shin, K. S., Kim, H. E., Hahn, B. D., Park, D. S., et al. (2011). Hydroxyapatite coating on magnesium with MgF(2) interlayer for enhanced corrosion resistance and biocompatibility. [Research Support, Non-U.S. Gov't]. Journal of Materials Science: Materials in Medicine, 22(11), 2437-2447, doi:10.1007/s10856-011-4431-3.
    42. Li, Z., Shizhao, S., Chen, M., Fahlman, B. D., Debao, L., & Bi, H. (2017). In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws. Materials Science and Engineering C: Materials for Biological Applications, 75, 1268-1280, doi:10.1016/j.msec.2017.02.168.
    43. Yu, W., Zhao, H., Ding, Z., Zhang, Z., Sun, B., Shen, J., et al. (2017). In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration. Colloids and Surfaces B: Biointerfaces, 149, 330-340, doi:10.1016/j.colsurfb.2016.10.037.
    44. Scheibel, M. T., & Habermeyer, P. (2003). A modified Mason-Allen technique for rotator cuff repair using suture anchors. Arthroscopy, 19(3), 330-333, doi:10.1053/jars.2003.50079.
    45. Thomann, M., Krause, C., Angrisani, N., Bormann, D., Hassel, T., Windhagen, H., et al. (2010). Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. [Research Support, Non-U.S. Gov't]. Journal of Biomedical Materials Research Part A, 93(4), 1609-1619, doi:10.1002/jbm.a.32639.
    46. Lin, D. J., Hung, F. Y., Yeh, M. L., Lee, H. P., & Lui, T. S. (2017). Correlation between Anti-Corrosion Performance and Optical Reflectance of Nano Fluoride Film on Biodegradable Mg-Zn-Zr Alloy: a Non-Destructive Evaluation Approach. International Journal of Electrochemical Science, 12(5), 3614-3634, doi:10.20964/2017.05.24.
    47. Kang, Y. G., Kim, J. H., Shin, J. W., Baik, J. M., & Choo, H. J. (2013). Induction of bone ingrowth with a micropore bioabsorbable suture anchor in rotator cuff tear: an experimental study in a rabbit model. [Evaluation Studies Research Support, Non-U.S. Gov't]. Journal of Shoulder and Elbow Surgery, 22(11), 1558-1566, doi:10.1016/j.jse.2013.01.034.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE