| 研究生: |
劉佳穎 Liu, Chia-Ying |
|---|---|
| 論文名稱: |
三維複合材料未知接合面幾何形狀預測之研究 A Three-Dimensional Shape Identification Problem in Estimating the Geometry of Interface in a Multiple Region Domain |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 三維複合材料未知接合面 |
| 外文關鍵詞: | A Three-Dimensional Shape Identification Problem |
| 相關次數: | 點閱:69 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文透過急遽遞減法(Steppest Descent Method)與套裝軟體CFD-RC的結合,配合模擬紅外線溫度感測器所量測的模型表面溫度值為參考,來對複合材料界面之幾何形狀進行預測。
本論文有兩個主題。在第二章中,吾人以套裝軟體CFD-RC為基礎,利用急遽遞減法來預測二區複合材料之未知界面幾何形狀 (即一組未知界面形狀,(x,y))。在第三章中,吾人亦以套裝軟體CFD-RC為基礎,利用急遽遞減法來預測三區複合材料之未知界面幾何形狀(即二組未知界面形狀1(x,y)及2(x,y) )。
本研究與之前相關研究不同的是,在進行二區和三區複合材料未知界面形狀之預測時,為了得到梯度方程式(gradient equation)必須利用一重複使用條件(over-utilized condition)方可達成目的。此外,吾人亦假設兩區或三區複合材料之界面為良好接觸(perfect thermal contact),故求解時需利用兩材料交界面上溫度相同且達到熱平衡之原理來求解。
最後在數值實驗中測試了考慮量測誤差與量測點數改變的情況,此外並於第二章中探討量測位置對於預測結果之影響。數值實驗結果皆證明了急遽遞減法於逆向幾何形狀預測問題中能夠正確預測複合材料內部界面形狀。
A three-dimensional shape identification problem (or inverse geometry problem) in estimating the interfacial geometry for a multiple region domain is solved by using the steepest descent method (SDM) and a general purpose commercial code CFD-RC based on the simulated measured temperature distributions on the surfaces obtained by the imaginary infrared scanners.
The present thesis has two themes, in chapter two the goal is to estimate only one irregular interfacial surface (x,y) in a two-layer structure, while in chapter three the objective is to estimate simultaneously two irregular interfacial surfaces 1(x,y) and 2(x,y) in a three-layer-structure.
In this work, in order to determine the gradient equation, one of the integral terms obtained from the integration by parts should be over-utilized. This differs from our previous relevant study. Also it is assumed that perfect thermal contact condition is applied to the interfacial surfaces between different materials.
The numerical experiments are performed to test the validity and accuracy of the present shape identification algorithm by using different types of interfaces, initial guesses and measurement errors. Results show that excellent estimations on the unknown geometry of the interfaces can be obtained by the present steepest descent method (SDM).
1. C. H. Huang, and J. Y. Yan, An Inverse Problem in Simultaneously Measuring Temperature Dependent Thermal Conductivity and Heat Capacity, Int. J. Heat and Mass Transfer, 38 (1995), 3433-3441.
2. O. M. Alifanov, Solution of an Inverse Problem of Heat Conduction by Iteration
Methods. J. of Engineering Physics, 26 (1974), 471-476.
3. C. H. Huang and S. C. Cheng, A Three-Dimensional Inverse Problem of Estimating the Volumetric Heat Generation for A Composite Material, Numerical Heat Transfer, Part A, 39 (2001), 383–403.
4. T. Burczynski, W. Beluch, A. Dlugosz, W. Kus, M. Nowakowski, and P. Orantek, Evolutionary Computation in Optimization and Identification, Comput. Assist. Mech. Eng. Sci., 9 (2002), 3–20.
5. T. Burczinski, J. H. Kane, and C. Balakrishna, Shape Design Sensitivity Analysis via Material Derivative-Adjoint Variable Technique for 3D and 2D Curved Boundary Elements, Int. J. Numer. Meth. Eng., 38 (1995), 2839–2866.
6. H. M Park, and H. J. Shin, Shape Identification for Natural Convection Problems using the Adjoint Variable Method, Journal of Computational Physics, 186 (2003), 198-211.
7. C. H. Cheng, and M. H. Chang, A Simplified Conjugate-Gradient Method for Shape Identification Based on Thermal Data, Numerical Heat Transfer; Part B, 43 (2003), 489-507.
8. E. Divo, A. J. Kassab and F. Rodriquez, An efficient singular superposition technique for cavity detection and shape optimization, Numerical Heat Transfer Part B, 46 (2004), 1-30.
9. C. H. Huang and B. H. Chao, An Inverse Geometry Problem in Identifying Irregular Boundary Configurations, Int. J. Heat and Mass Transfer, 40 (1997), 2045-2053.
10. C. H. Huang and C. C. Tsai, A Transient Inverse Two-Dimensional Geometry Problem in Estimating Time-Dependent Irregular Boundary Configurations, Int. J. Heat and Mass Transfer, 41 (1998), 1707-1718.
11. C. H. Huang, C. C. Chiang and H. M. Chen, Shape Identification Problem in Estimating the Geometry of Multiple Cavities, AIAA, J. Thermophysics and Heat Transfer, 12 (1998), 270-277.
12. C. H. Huang and T. Y. Hsiung, An Inverse Design Problem of Estimating Optimal Shape of Cooling Passages in Turbine Blades, Int. J. Heat and Mass Transfer (SCI &EI paper), 42, No. 23(1999), 4307-4319.
13. C. H. Huang and H. M. Chen, An Inverse Geometry Problem of Identifying Growth of Boundary Shapes in A Multiple Region Domain, Numerical Heat Transfer; Part A, 35 (1999), 435-450.
14. C. H. Huang and M. T. Chaing, A Transient Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Irregular Boundary Shapes, Int. J. Heat and Mass Transfer, 51 (2008), 5238–5246.
15. C. H. Huang and C. A. Chen, “A Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Shape of An Irregular Internal Cavity”, Int. J. Heat and Mass Transfer, 52 (2009), 2079–2091.
16. C. H. Huang and C. C. Shih, A Shape Identification Problem in Estimating Simultaneously Two Interfacial Configurations in a Multiple Region Domain, Applied Thermal Engineering, 26 (2006), 77–88, 2006.
17. O. M. Alifanov, Inverse Heat Transfer Problem, Springer-Verlag, Berlin Heidelberg, 1994.
18. L. S. Lasdon, S. K. Mitter, and A. D. Warren, The Conjugate Gradient Method for Optimal Control Problem, IEEE Transactions on Automatic Control, AC-12 (1967), 132-138.
19. IMSL Library Edition 10.0, User's Manual: Math Library Version 1.0, IMSL, Houston, TX, 1987