簡易檢索 / 詳目顯示

研究生: 甘明吉
Kan, Ming-Chi
論文名稱: 奈米尺寸碳材料之電子發射特性
The electron emitting characteristics of nano-sized carbon materials
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 167
中文關鍵詞: 場發射鑽石材料奈米碳管場發射平面顯示器
外文關鍵詞: Field emission, Diamond, Carbon nanotubes, Field Emission Display
相關次數: 點閱:124下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對奈米結構之非晶鑽石薄膜及奈米碳管之電子場發射行為,以陰極電弧沉積非晶鑽薄膜為主軸並與奈米碳管及文獻上之其他場發射子材料作比較。此外本研究將探討奈米結構之非晶鑽石薄膜之電子場發射穩定性、再現性及高溫電子場發射之特性,進而研究將其鍍在ITO玻璃及Al 尖錐陣列基板上之性質。
    實驗是以不同之參數 (偏壓、電弧電流、氬氣及氮氣流量等)來控制非晶鑽石薄膜之鍵結形態及幾何形狀,探討其對電子場發射性質的影響。由實驗結果得知,適當的sp3/(sp3+sp2) 之比例、氮原子含量及較大長寬比之奈米尖錐可獲得較佳之電子場發射特性。
    在場發射平面顯示器的應用方面,為了低成本及大面積化,使非晶鑽石膜能成功地應用在電子場發射元件上,除以研究其低起始電壓及高電流密度之特性外,本研究亦利用陰極電弧之低溫成長之特點,在ITO玻璃及微米鋁尖錐陣列基材上沉積奈米結構之非晶鑽石薄膜,並探討其對於電子場發射性質的影響。結果顯示奈米結構非晶鑽石薄膜可成功地沉積在ITO玻璃及微米鋁尖錐陣列基材上,且奈米結構非晶鑽石薄膜擁有高場發射穩定性、熱穩定性、環境穩定性及高再現性,証明奈米結構非晶鑽石薄膜可應用於高穩定性及低成本之場發射平面顯示器 應用。
    近十年來,奈米碳基材料之常溫場發射特性及其穩定性已被廣泛的研究,但其在高溫之場發射特性及其穩定性卻很少有人研究。為了研究之完整性,亦探討奈米尖錐結構非晶鑽石薄膜及奈米碳管之高溫電子發射特性,以了解二者碳基材料之高溫電子發射行為。由實驗結果証實奈米碳管及非晶鑽石薄膜之熱-場電子發射行為有非常大之不同,非晶鑽石薄膜之溫度對於電子發射有較大的影響,故非晶鑽石薄膜之熱激發比奈米碳管更有效促進電子之發射,這是由於非晶鑽石內部存有缺陷能帶。
    研究亦用熱處理來改變非晶鑽石薄膜的熱激發射電子特性的影響。由實驗得知,熱處理後,非晶鑽石之熱激發敏感性增加,溫度對電子發射的影響增加,進而有效地促進熱激發射電子的效應。
    綜合實驗之結果顯示,以傳統陰極電弧物理氣相沉積法,可沉積低起始電場強強度、高電流密度、高場發射穩定性、熱穩定性、環境穩定性及高再現性之非晶鑽石,且亦可沉積於低成本及易大面積化之基材上,証明非晶鑽石薄膜可應用於高穩定性及低成本之場發射平面顯示器應用。

    Field emission characteristics of Nano-structured amorphous diamond and carbon nanotubes were reported in this study. We focus on amorphous diamond films deposited by cathodic arc and compare with carbon nano-tubes and other emitter materials in the literatures. However, in order to realize practical Field Emission Displays (FEDs), these carbon-based films should meet other requirements such as uniformity, stability, reproducibility, wide operating temperature range, and low deposition temperature. Hence, stability, reproducibility, and high temperature performance of electron emission were also investigated. Moreover, the electron field emission of amorphous diamond films deposited on ITO glass substrates and micro aluminum cone arrays were also studied in order to explore the potential for large-area application.
    In this study, comparison of field emission characteristics of different geometrical shapes and bonding structure of amorphous diamond films were investigated. The influences of arc current, nitrogen content and argon content on depositing amorphous diamond are also discussed. This research demonstrated that both bonding structure and geometrical structure of amorphous diamond could be controlled by varying the current of the cathodic arc, argon content and nitrogen content. The electron emission was dependent on aspect ratio of nano-tips, bonding structure, and nitrogen content. Moreover, amorphous diamond can be deposited with a high-density (4´1010 emitters/cm2) of nano-sized emitters.
    Specifically for FEDs applications, field emission arrays fabricated on a glass substrate, for low cost large-area applications were studied. In this thesis, nano-structured amorphous diamond films were deposited on ITO glass substrates utilizing a cathodic arc at a substrate temperature of less than 150 oC. We have reported on the stability in field emission of nano-structured amorphous diamond films deposited on ITO glass and micro aluminum cones substrates. The stability of field emission, thermal stability, environmental stabilities, and high reproducibility have also been studied. From the experimental results, this research demonstrated high stability and low-cost for FEDs applications.
    The filed emission characterization of nano-carbon based materials at low temperature has been extensively studied. Practically, the large working temperature range and its high temperature stability have played an important role on the application of FEDs. However, only very few researchers has concentrated on the field emission characterization and the stability of nano-carbon based materials at high temperatures. The electron emission characteristics of amorphous diamond films and carbon nanotubes in high temperature were also reported in this study. From experimental results, when the cathode material is heated up, the responses of electron thermal-filed emission in vacuum are dramatically different between the two types of carbon materials. Electron emission of amorphous diamond films was more sensitive to temperature than carbon nanotubes. The thermally agitated emission of amorphous diamond suggests the presence of a defect band that allows electrons to “climb the ladder” with the thermal enhancement so they can overcome the work function with ease.
    Moreover, heat treatment was used in order to improve thermally agitated emission of amorphous diamond films. Electron emission of amorphous diamond films was more sensitive to temperature after heat treatment. Therefore, the thermally agitated emission of amorphous diamond was enhanced by heat treatment.
    The capabilities of nano-structured amorphous diamond for field emission deposited by cathodic arc have been fully demonstrated in this study. However, The commercial usage of FPDs is dependent on the uniformity and stability of electronic field emission, as well as the reproducibility of its performance. In this study, the results of amorphous diamond film will be extended to investigate the principles and characteristics of electron field emission. Moreover, the manufacturing parameters for producing amorphous diamond with low turn-on applied field, high emission current density, high stabilities, and high reproducibility emission characteristics, durable performance and low-cost was achieved.

    總 目 錄 中文摘要 I 英文摘要 III 總目錄 VI 圖目錄 IX 表目錄 XVII 第一章 1 1-1 前言 1 1-2 研究目的與方向 6 第二章 理論基礎與前人的研究 9 2-1 碳材料之簡介 9 2-2鑽石材料 15 2-2鑽石合成 20 2-3 平面顯示器 (Flat Panel Display, FPD) 24 2-3-1場發射平面顯示器 26 2-3-2奈米鑽石薄膜應用於場發射平面顯示器 30 2-4電子場發射理論 35 2-4-1電子場發射(Electron field emission) 37 2-4-2熱激電子發射(Electron thermionic emission) 39 2-4-3熱-場電子發射(Thermal-field emission) 42 第三章 實驗方法與步驟 44 3.1 實驗流程 44 3.2 實驗的原料 44 3.3 基材前處理 46 3.4 實驗設備 46 3.5 濺鍍步驟與條件 48 3.6 鍍層的分析及測試 48 3.6.1 濺鍍速率的量測 (SEM) 49 3.6.2微結構及表面形態的觀察 (SEM, TEM, AFM) 49 3.6.3 ESCA (XPS) 成份及鍵結形態分析 52 3.6.4 AES成份及縱深分析 52 3.6.4 Raman鍵結形態分析 53 3.6.5 霍爾效應量測 (Hall effect measurement) 53 3.6.6 I-V 之測量分析 53 第四章 結果與討論 57 4-1 鍵結形態 (sp2及sp3之比例) 對電子場發射性質的影響 57 4-2 奈米非晶鑽石尖錐之幾何形狀對電子場發射性質的影響 66 4-3 含氮非晶鑽石薄膜之電子場發射特性 86 4-4 奈米結構之非晶鑽石沉積在ITO玻璃 100 4-5在鋁 尖錐陣列基板上鍍奈米結構非晶鑽石 114 4-6 金屬中間層對電子場發射特性之影響 121 4-7 非晶鑽石薄膜之熱激發電子發射特性 133 4-8 熱處理對非晶鑽石薄膜之激發發射電子特性的影響 142 第五章 總 結 論 151 參考文獻 153 誌謝 161 作 者 簡 歷 162 研 究 成 果 目 錄 163 圖 目 錄 Fig. 1-1 Comparison with Field Emission Display (FED) and conventional Cathode Ray Tubes (CRT). 2 Fig. 1-2 Band diagram of the surface of a semiconductor which exhibits (a) positive electron affinity, (b) effective negative electron affinity, and (c) true negative electron affinity. 5 Fig. 1-3 The investigating subjects in the thesis. 8 Fig. 2-1. Three-dimensional diamond representation of sp3 covalent bonding (diamond structure). 10 Fig. 2-2. Schematic of the electronic structure of the carbon atom in the ground state. 11 Fig. 2-3. Carbon phase diagram. 12 Fig. 2-4. Carbon allotropic forms, (a) three-dimensional schematic of the graphite structure, (b) schematic of a C60 fullerene molecule, (c) schematic of two different carbon nanotubes structure, (d) carbon onions structure. 13 Fig. 2-5. The characteristics of diamond materials compared with other materials. 18 Fig. 2-6. The applications of diamond materials. 19 Fig. 2-7 The C/H/O diagram of diamond CVD (Bachmann et al. 1991) reveals that diamond deposition is only feasible in a narrow diamond domain in the center of this gas phase compositional diagram. This diagram includes datapoints from more than 30 sources, obtained in over experiments and relating to thermal CVD, hot filament data, microwave plasma CVD, DC jet data, RF torch CVD, ECR microwave plasma CVD, DC glow discharge data, flames. 22 Fig. 2-8. Ternary phase diagram of amorphous carbon. The three corers correspond to diamond, graphite, and hydrogen, respectively. 25 Fig. 2-9. The structure of field emission display. 29 Fig. 2-10. The construction of FEDs and LCDs. (FEDs are simpler and less expensive to make than LCD. The construction of FEDs is less complex, with a higher tolerance for defects, fewer layers of assembly and fewer alignment problems. ) 31 Fig. 2-11. Field emission display (a) using Spindt tips and (b) using diamond cathodes. 32 Fig. 2-12. Emitting image of fully sealed SWNT-FED at color mode with red, green, and blue phosphor columns. 36 Fig. 2-13. Energy diagrams of vacuum-metal boundary. 38 Fig. 2-14. Relation between current density and temperature for Richardson-Dushman equation. 40 Fig. 2-15. Thermionic emission and field emission region of temperature and applied field. 41 Fig. 2-16. The relationship of energy distribution with temperature, applied field strength. 43 Fig. 3-1 Flow chart of the experimental procedure. 45 Fig. 3-2 Experimental Equipment. 47 Fig. 3-3 Renishaw Raman microscope system 2000. 54 Fig. 3-4 Schematic diagram of field emission measurement. 56 Fig. 4-1. C 1s peak for amorphous carbon. The composite distribution was fitted by a Gaussian function with three components. 59 Fig. 4-2. sp3 /(sp3 + sp2) ratio of amorphous diamond deposited using different bias. 60 Fig. 4-3. The typical Raman spectrum (a), and ratios of Raman spectra peak intensity (ID/IG), FWHMs and integrated peak areas between the D and G band (b) of amorphous diamond deposited at different bias. 61 Fig. 4-4. J-F characteristics (a), and F-N plots (b) of amorphous diamond deposited at bias of -20, -40, -60, -100 and -120 V. 63 Fig. 4-5. Variation of turn on applied field strength for amorphous diamond films deposited at different bias. 64 Fig. 4-6. HETEM lattice images of amorphous DLC (a) (b) and diffraction pattern (c) of amorphous diamond film containing nano-clusters. 65 Fig. 4-7. The reproducibility of I-V characteristics for amorphous diamond films deposited at different bias. 67 Fig. 4-8. C 1s peak for amorphous carbon. The composite distribution was fitted by a Gaussian function with three components. 69 Fig. 4-9. sp3 /(sp3 + sp2) ratio of amorphous diamond deposited using different arc currents. 70 Fig. 4-10. sp3 /(sp3 + sp2) ratio of amorphous diamond deposited at different argon content. 71 Fig. 4-11. Raman spectra of amorphous diamond films. 72 Fig. 4-12. Ratios of Raman spectra peak intensity (ID/IG), FWHMs and integrated peak areas between the D and G band of amorphous diamond deposited at different arc currents. 73 Fig. 4-13. Ratios of Raman spectra peak intensities (ID/IG), FWHMs and integrated peak areas between the D and G band of amorphous diamond deposited by varying argon content. 74 Fig. 4-14. AFM’s 3-Dimensions micrographs (scanning range 3 mm ´ 3 mm) of amorphous diamond films deposited at arc current of: (a) 30 A, (b) 50 A, (c) 80 A, (d) 100 A. (x-axis: 1 mm/ div., z-axis: 20 nm/ div.) 76 Fig. 4-15. AFM’s 3-Dimensios micrographs (scanning range 3 mm ´ 3 mm) of amorphous diamond films deposited by varying the argon content at: (a) 20 sccm, (b) 30 sccm (c) 40 sccm (d) 60 sccm. (x-axis: 1 mm/ div., z-axis: 20 nm/ div.) 78 Fig. 4-16. Aspect ratio of nanotips of amorphous diamond deposited at different arc currents. 79 Fig. 4-17. Aspect ratio of nanotips deposited at different argon contents. 80 Fig. 4-18. AFM’s 2-dimensions micrographs of amorphous diamond. 81 Fig. 4-19. The tip size width distributions of amorphous diamond. 82 Fig. 4-20. Comparison of field emission J-F curves (a) and F-N plot (b) of amorphous diamond films deposited by arc current was varied at 30, 50, 80, and 100 A. 83 Fig. 4-21. Reproducibility of field emission for amorphous diamond films deposited by arc current. 85 Fig. 4-22. J-F characteristics (a), and F-N plots (b) of the amorphous diamond deposited at different argon contents. 87 Fig. 4-23. J-F characteristics of the amorphous diamond with different aspect ratio of nanotips. 88 Fig. 4-24. Relations between turn-on field strength and aspect ratio of nanotips. 89 Fig. 4-25. The reproducibility of I-V characteristics plotted in log scale for nanotips of amorphous diamond films with the highest aspect ratio. 90 Fig. 4-26. C1s (a) and N1s (b) spectra of amorphous diamond films and curves fitted by Gaussian function. 92 Fig. 4-27. Relation between nitrogen partial pressure and nitrogen content in doped amorphous diamond films. 93 Fig. 4-28. Relative fraction of sp3 bonded C atom [sp3/(sp3+sp2)] remains unchanged whatever the nitrogen content is. 94 Fig. 4-29. The typical Raman spectra (a) and G peak positions of Raman spectra (b) of nitrogen-doped amorphous diamond films. 96 Fig. 4-30. Depth profiles of nitrogen-doped amorphous diamond films by AES analysis. 97 Fig. 4-31. AFM images of undoped (a) and doped (b) amorphous diamond films. 99 Fig. 4-32. The field emission J-F curves (a) and F-N plots (b) for the amorphous diamond with different nitrogen contents. 101 Fig. 4-33. The reproducibility of field emission for doped amorphous diamond film. 103 Fig. 4-34. SEM (a), and AFM micrographic (b) of nano-structured amorphous diamond films. 105 Fig. 4-35. Field emission J-F curves (a) and F-N plots (b) for the nano-structured amorphous diamond. 106 Fig. 4-36. Emission stability of nano-structured amorphous diamond films detected at 480 V for 5 hours. 107 Fig. 4-37. Raman spectra of nano-structured amorphous diamond before and after 5 hours of emission stability. 109 Fig. 4-38. Raman spectrum of the amorphous diamond films before and after heat treatment in vacuum. 110 Fig. 4-39. Field emission J-F curves for the nano-structured amorphous diamond before and after heat treatment in vacuum. 111 Fig. 4-40. Environmental stability of nano-structured amorphous diamond. 112 Fig. 4-41. Reproducibility of field emission for nano-structured amorphous diamond film. 113 Fig. 4-42. FESEM microphotograph of micro Al cones array (a), and AFM microphotograph of nano-tips of amorphous diamond coated Al cones (b). (x-axis: 0.2 mm/ div., z-axis: 20 nm/ div.) 116 Fig. 4-43. The field emission J-F curves (a) and F-N plots (b) for micro Al cones with and without nano-tips of amorphous diamond coated. 117 Fig. 4-44. A schematic energy band diagram of micro Al cone (a) and nano-tips of amorphous diamond coated Al cone (b). EF is Fermi energy, EVAC is the vacuum level, EC is conduction band, EV is valence band, and fBn is the height of the Schottky barrier. 119 Fig. 4-45. A schematic energy band diagram shows the presence of defect-induced energy bands within the band gap of amorphous diamond. 120 Fig. 4-46. Long time electron emission stability of nano-tips of amorphous diamond coated micro Al cones measured at a field of 7 V/mm. 122 Fig. 4-47. Electron emission currents fluctuations of nano-tips of amorphous diamond coated micro Al cones measured at a field of 7 V/mm. 123 Fig. 4-48. AFM of 3-dimensions (a) and 2-dimensions (b) micrographs of nanotips of amorphous diamond films deposited on metal/ITO glass substrate. 125 Fig. 4-49. Aspect ratio of nanotips of amorphous diamond deposited at different metal (Mo, Cr, Ti, W) interlayers. 126 Fig. 4-50. The typical Raman spectra (a) and G peak positions of Raman spectra (b) of nanotips of amorphous diamond films deposited on metal/ITO glass substrate. 127 Fig. 4-51. Depth profiles of nanotips of amorphous diamond films deposited on metal/ITO glass substrate by AES analysis. 128 Fig. 4-52. The field emission J-F curves (a) and F-N plots (b) for the nanotips of amorphous diamond with different metal (Mo, Cr, Ti, W) intermediate layers. 130 Fig. 4-53. The relations between turn on applied field strength and aspect ratio of amorphous diamond deposited at different metal (Mo, Cr, Ti, W) intermediate layers. 131 Fig. 4-54. The reproducibility of field emission for nanotips of amorphous diamond film deposited on metal/ITO glass substrate. 132 Fig. 4-55. The AFM images of nano-tips of amorphous diamond (a) and the FESEM image of aligned CNTs (b) studied in this research. 134 Fig. 4-56. The field emission J-F curves for the nano-tips of amorphous diamond at various temperatures. 136 Fig. 4-57. The dependence of electron emission current density on temperature. 137 Fig. 4-58. The relationship between turn-on applied field strength and temperature. 138 Fig. 4-59. The field emission J-F curves for the aligned CNTs at various temperatures. Note that the emission current remains unchanged with the increasing of temperature. 139 Fig. 4-60. The comparison of thermionic electron emissions of amorphous diamond and CNTs and that predicted by Richardson-Dushman equation. 140 Fig. 4-61. A schematic energy band diagrams of amorphous diamond (a), and carbon nanotubes (b). Note the existence of defect band in the former. 143 Fig. 4-62. The reproducibility of thermal-field emission for nano-tips of amorphous diamond film at 300 oC. 144 Fig. 4-63. The field emission J-F curves for the nano-tips of amorphous diamond deposited on Mo/ITO glass substrates at various temperatures. 146 Fig. 4-64. The relationship between current density and temperature at high and low applied field strength. 147 Fig. 4-65. Depth profiles of as-deposited (a) and 400 oC treatment (b) for nanotips of amorphous diamond films deposited on Mo/ITO glass substrate by AES analysis. 148 Fig. 4-66. The field emission J-F curves of as-deposited and 400 oC treatment for the nano-tips of amorphous diamond deposited on Mo/ITO glass substrates at various temperatures. 149 Fig. 4-67. The relationship between current density and temperature of as-deposited and 400 oC treatment for the nano-tips of amorphous diamond deposited on Mo/ITO glass substrates at various temperatures. 150 表 目 錄 Table 2-1 Comparison of graphite, diamond, and DLC. 16 Table 2-2 The properties of diamond. 17 Table 2-3 Methods for synthesizing diamond at low pressure and low temperature. 21 Table 2-4 Properties of DLC and CVD diamond. 23 Table 2-5 Comparison with six major types of display. 27 Table 2-6 Emission turn on fields for various emitter materials. 34 Table 3-1 Techniques for the characterization of carbon materials films. 50 Table 4-1. Roughness analysis of AFM. 77 Table 4-2. Electron emission characteristic of amorphous diamond films deposited by arc current varied at 30, 50, 80, and 100A. 84 Table 4-3. The dependence of resistivity, electron concentration, and electron mobility on nitrogen content of amorphous diamond films. 98 Table 4-4. Turn on applied filed strength of undoped and doped amorphous diamond films. 102

    Reference:
    1. Candescent Technologies Corporation, web site: http://www.candescent.com/
    2. W. A. D. Heer, A. Chatelain, and D. Ugarte, “A carbon nanobutes field-emission electron source,” Science, 270 (1995) 1179-80.
    3. O. M. Kuttel, O. Groning, C. Emmenegger, L. Nilsson, E. Maillard, L. Diederich, and L. Schlapbach, “Field emission from diamond, diamond-like and nanostructured carbon films,” Carbon, 37 (1999) 745-52.
    4. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, 283 (1999) 512-14.
    5. M. C. Kan, J. L. Huang, J. C. Sung, and D. F. Lii, “Electron emission from nanotips of amorphous diamond,” J. Vac. Sci. Technol. B, 21 (2003) 1216-23.
    6. M. C. Kan, J. L. Huang, J. C. Sung, D. F. Lii, and B. S. Yau, “Field emission of micro alumium cones coated by nano-tips amorphous diamond,” Diamond Rel. Mater., 12 (2003) 1610-14.
    7. Y. Nishibayashi, Y. Ando, H. Furuta, K. Kobashi, K. Meguro, T. Imai, T. Hirao, and K. Oura, “Various field emitters of single crystal diamond,” New Diamond and Frontier Carbon Technology, 13 (2003) 19-30.
    8. T. Tyler, V. V. Zhirno, A. V. Kvit, D. Kang, and J. J. Hren, “Electron emission from diamond nanoparticles on metal tips,” Appl. Phys. Lett., 82 (2003) 2904-06.
    9. V. I. Merkulov, D. H. Lowndes, L. R. Baylor, and S. Kang, “Field emission properties of different forms of carbon,” Solid-State Electronics, 45 (2001) 949-56.
    10. J. M. Kim, W. B. Choi, N. S. Lee, J. E. Jung, “Field emission from carbon nanotubes for display,” Diamond Rel. Mater.,9 (2000) 1184-89.
    11. A. N. Obraztsov, A. P. Volkov, and I. Pavlovsky, “Field emission from nanostructured carbon materials,” Diamond Rel. Mater., 9 (2000) 1190-95.
    12. L. S. Pan and D. R. Kania, Chapter 2, “Surfaces and interfaces of diamond” in Diamond: Electronic Properties and Applications, Kluwer Academic press, p. 31-60 (1995).
    13. H. O. Pierson, Chapter 2, “The element carbon” in Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, p. 11-41 (1993).
    14. H. O. Pierson, Chapter 15, “The fullerene molecules” in Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, p. 356-371 (1993).
    15. P. J. F. Harris, Chapter 1, “Introduction” in Carbon nanotubes and related structures, Cambridge university press, p. 1-14 (1999).
    16. P. J. F. Harris, Chapter 8, “Carbon onions and spheroidal carbon” in Carbon nanotubes and related structures, Cambridge university press, p. 235-246 (1999).
    17. H. O. Pierson, Chapter 14, “Diamond-like carbon (DLC)” in Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, p. 337-355 (1993).
    18. 宋健民, “PVD鑽石的應用,” Chapter 8, 超硬材料 (2000).
    19. 彭國光, “微波電漿化學氣相沉積法之鑽石薄膜的成長與特性研究 ,” 國立清華大學材料科學工程系博士論文 (2002).
    20. 李昇頤, “熱燈絲化學氣相沉積法於矽基材成長大面積鑽石膜之均勻性研究,” 國立成功大學材料科學及工程系碩士論文 (2000).
    21. P. K. Bachmann, Chapter 3, “Microwave plasma CVD and related techniques for low pressure diamond synthesis,” in Thin film diamond, Chapman & Hall press, p. 31-53.
    22. A. C. Ferrari, and J. Robertson, Physical Review B, 61 (2000) 14095-107.
    23. 顧鴻壽、周本達、陳密、張德安、樊雨心、周宜衡, “光電平面面板顯示器基本概論,” 高立出版社 (2002).
    24. 江典聲, “沉積場發射類鑽碳薄膜於玻璃基板之研製, ” 大同大學光電工程研究所碩士論文(2001).
    25. A. P. Burden, International Materials Reviews, 46 (2001) 213.
    26. J. Robertson, W. Milne, Journal of Non-Crystalline Solids 227–230 1998 558–564
    27. V. G. Litovchenko, A. A. Evtukh, R. I. Marchenko, N. I. Klyui and V. A. Semenovich, Appl. Surf. Sci. 111, 213 (1997).
    28. A. Llie, A. C. Ferrari, T. Yangi, and J. Robertson, Appl. Phys. Lett. 76, 2627 (2000).
    29. K. H. Chen, J. J. Wu, L. C. Chen, C. Y. Wen, P. D. Kichambare, F. G. Tarntair, P. F. Kuo, S. W. Chang, and Y. F. Chen, Diamond Rel. Mater. 9, 1249 (2000).
    30. W. Zhu, C. Bower, G. P. Kochanski, and S. Jin, Diamond Rel. Mater. 10, 1709 (2001).
    31. Y. H. Chen, C. T. Hu, and I. N. Lin, J. Appl. Phys. 84, 3890 (1998).
    32. F. G. Tarntair, L. C. Chen, S. L. Wei, W. K. Hong, K. H. Chen, and H. C. Chen, J. Vac. Sci. Technol. B 18, 1207 (2000).
    33. O. Gröning, O. M. Küttel, P. Gröning and L. Schlapbach, Appl. Surf. Sci.111, 135 (1997).
    34. S. E. Huq, P. D. Prewett, J. C She, S. Z. Deng and N. S. Xu, Mater. Sci. and Eng. B 74, 184 (2000).
    35. W. Zhu, G. P. Kochanski, S. Jin, Science 282, 1471 (1998).
    36. K. Okano, S. Koizumi, S. R. P. Silva, and G. A. J. Amaratunga, Nature 381, 140 (1996).
    37. W. Zhu, C. Bower, G. P. Kochanski, S. Jin, Soild-State Electronic, 45 (2001) 921-928
    38. J.L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Diamond Relat. Mater. 9 (2000) 1270–1274
    39. F. Y. Wen, L. C. Chen, J. J. Wu, K. H. Chen, P. F. Kuo, C. W. Chang, Y. F. Chen, W. K. Hong and H. C. Chen, Appl. Phys. Lett., 76 [18] (2000) 2630-32
    40. F. Hoshi, K. Tsugawa, A. Goto, T. Ishikura, S. Yamashita, M. Yumura, T. Hirao, K. Oura, Y. Koga, Diamond Relat. Mater., 10 (2001)254-259
    41. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Appl. Phys. Lett., 75 (1999) 3129-3131
    42. A. Modinos, Chapter one, “Electron emission from free-electron metal,” in Field, Thermionic, and Second Electron Emission Spectroscopy, Plenum Press, 1-34, 1984.
    43. D. Hong and M. Aslam, J. Vac. Sci. Technol. B 12, 764 (1994).
    44. F. Y. Wen, L. C. Chen, J. J. Wu, K. H. Chen, P. F. Kuo, C. W. Chang, Y. F. Chen, W. K. Hong and H. C. Chen, Appl. Phys. Lett. 76, 2630 (2000).
    45. V. V. Zhirnov, C. L. Rinne, G. J. Wojak, R. C. Sanwald, and J. J. Hren, J. Vac. Sci. Technol. B 19, 87 (2001).
    46. A. C. Marshall. Surf. Sci., 517 (2002) 186-206.
    47. 成會明, “納米碳管 製備、結構、物性及應用,” 化學工業出版社, p. 287-334 (2002).
    48. W. Zhu, H. S. Kong, and J. T. Glass, “Characterization of diamond films”, in Diamond Films and Coatings edited by Robert F. Davis, Noyes Publications, p. 244-338 (1993).
    49. B. Angleraud, N. Mubumbila, P. Y. Tessier, V. Fernandez, and G. Turban, Diamond Relat. Mater. 10, 1142 (2001).
    50. S. T. Jackson, and R. G. Nuzzo, Appl. Surf. Sci. 90, 195 (1995).
    51. P. Petrov, D. B. Dimitrov, D. Papadimitrious, G. Beshkov, V. Krastev, and Ch. Georgiev, Appl. Surf. Sci. 151, 233 (1999).
    52. E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, and Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys., 86 [11] 6078-83 (1999).
    53. M. Chhowalla, A. C. Ferrari, J. Robertson, and G. A. J. Amaratunga, “Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy,” Appl. Phys. Lett., 76 [11] 1419-21 (2000).
    54. J. Y. Shim, and H. K. Baik, “Effect of non-diamond carbon etching on the field emission property of highly sp2 bonded nanocrystalline diamond films,” Diamond Relat. Mater. 10 847-51 (2001).
    55. 汪建民主編, “材料分析”, 中國材料科學學會出版, 659-72 (1998).
    56. S. Xu, B. K. Tay, H. S. Tan, L. Zhong, Y. Q. Tu, S. R. P. Silva, and W. I. Milne, “ Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy,” J. Appl. Phys. 79 (9) 7234-40 (1996).
    57. 宋健民, “PVD 鑽石膜的塗佈,” Chapter 6, 鑽石的合成(2000).
    58. P. J. Martin, and A. Bendavid, “Review of the filtered vacuum arc process and materials depostion,” Thin Solid Films 394 (2001) 1-15.
    59. E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, and Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys., 86 [11] 6078-83 (1999).
    60. M. Chhowalla, A. C. Ferrari, J. Robertson, and G. A. J. Amaratunga, “Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy,” Appl. Phys. Lett., 76 [11] 1419-21 (2000).
    61. J. Y. Shim, and H. K. Baik, “Effect of non-diamond carbon etching on the field emission property of highly sp2 bonded nanocrystalline diamond films,” Diamond Relat. Mater. 10 847-51 (2001).
    62. B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson, “ Field emission from tetrahedral amorphous carbon,” Appl. Phys. Lett. 71 (10) 1430-32 (1997).
    63. J. Robertson, and W. Milne, ” Band model for electron emission from diamond-like carbon and diamond,” Journal of Non-Crystalline Solids 227-230 558-64 (1998).
    64. A. Hart, B. S. Satyanarayana, W. I. Milne, and J. Robertson, “ Field emission from tetrahedral amorphous carbon as a function of surface treatment and substrate material,” Appl. Phys. Lett. 74 (11) 1594-96 (1999).
    65. A. Llie, A. C. Ferrari, T. Yagi, and J. Roberston, “ Effect of sp2-phase nanostructure on field emission from amorphous carbon,” App. Phys. Lett. 76 (18) 2627-29 (2000).
    66. G. A. J Amaratunga, M. Baxendale, N. Rupesinghe, I. Alexandrou, M. Chhowalla, T. B. A. Munindradasa, C. J. Kiley, L. Zhang and T. Sakai,“Field emission from new of thin film amorphous carbon having nanoparticle inclusions and carbon nanotubes,” New Diamond and Frontier Carbon Tech., 9 [1] 31-51 (1999).
    67. B. S. Satyanarayana, J. Robertson, and W. I. Milne, “ Low field electron emission from nanoclustered carbon grow by cathodic arc,” Diamond Relat. Mater. 9 1213-17 (2000).
    68. B. L. Weiss, A. Badzian, L. Pillone, T. Badzian, and W. Drawl, “ Electron emission from disordered tetrahedral carbon,” Appl. Phys. Lett. 71 (6) 794-96 (1997).
    69. P. J. Martin, and A. Bendavid, “Review of the filtered vacuum arc process and materials deposition,” Thin Solid Films, 394 1-15 (2001).
    70. A. Llie, A. C. Ferrari, T. Yangi, and J. Robertson, Appl. Phys. Lett. 76, 2627 (2000).
    71. K. Okano, S. Koizumi, S. R. P. Silva, and G. A. J. Amaratunga, Nature 381, 140 (1996).
    72. V. S. Veerasamy, J. Yuan, G. A. J Amaratunga, W. I. Milne, K. W. R. Gilkes, M. Weiler, and L. M. Brown, Phys. Rev. B 48, 17954 (1993).
    73. J. Robertson, and C. A. Davis, Diamond Rel. Mater. 4, 441 (2001).
    74. J. P. Xanthakis, and A. Modinors, Diamond Rel. Mater. 9, 798 (1999).
    75. Y. K. Hong, J. J. Kim, J. S. Kim, I. C. Jeon, C. Park, and J. K. Kim, Appl. Surf. Sci. 146, 269 (1999).
    76. K. H. Park, K. M. Lee, S. Choi and S. Lee: J. Vac. Sci. Technol. B 19 (2001) 946.
    77. J. L. Hsu, C. Y. Sun, H. F. Cheng, F. Y. Chuang, C. H. Tsai and W. C. Wang: Appl. Surf. Sci. 142 (1999) 510.
    78. K. A. Dean and B. R. Chalamala: Appl. Phys. Lett. 76 (2000) 375.
    79. S. H. Lim, H. S. Kim, C. H. Lee, S. T. Pietruszko and J. Jang: Journal of Non-Crystalline Solid 299-302 (2002) 864.
    80. C. M. Lin, S. J. Chang, M. Yokoyama and I. N. Lin: J. Vac. Sci. Technol. B 18 (2000) 2424.
    81. M. W. Geis, J. C. Twichell, and T. M. Lyszczarz, J. Vac. Sci. Technol. B 14 (1996) 2060.
    82. M. W. Geis, N. N. Efremow, K. E. Krohn, J. C. Twichell, T. M. Lyszczarz, R. Kalish, J. A. Greer, and M. D. Tabat, Nature 393 (1998) 431.
    83. M. N. Semeria, J. Baylet, B. Montmayeul, C. Germain, B. Angleraud, and A. Catherinot, Diamond Relat. Mater. 8 (1999) 801.
    84. D. Hong, and M. Aslam, J. Vac. Sci. Technol. 13 (1995) 427.
    85. E. Y. Chuang, C. Y. Sun H. F. Cheng, C. M. Huang, and I. N. Lin, Appl. Phys. Lett. 68 (1996) 1666.
    86. J. L. McCall, J. F. Breedis, R. W. Brodie, E. D. Coberly, R. C. Cornel, P. E. Fortin, H. Y. Hunsicker, G. C. Hsu, P. V. Mara, P. A. Tombin, and H. Baker, in: W. H. Cubberly (Ed.), Metals Handbook, American Society for Metals Press, 9th ed., v 2, 1979, p. 3.
    87. H. Gamo, S. Kanemaru, and J. Itoh, Appl. Surf. Sci. 146 (1999) 187.
    88. A. P. Burden, International Materials Reviews 46 (2001) 213.
    89. S. H. Ahn, K. R. Lee, K. Y. Eun, and D. Jeon, Surf. and Coat. Technol. 120-121 (1999) 734.
    90. Y. H. Chen, C. T. Hu, and I. N. Lin, J. Appl. Phys. 84 (1998) 3890.
    91. W. Zhu, G. P. Kochanski, S. Jin, and L. Seibles, J. Appl. Phys. 78 (1995) 2707.
    92. P. Stumm, and D. A. Drabold, J. Appl. Phys. 81 (1997) 1289.
    93. J. Sung, M. C. Kan, J. L. Huang, and K. H. Chen, ICMCTF 2003, San Diego, April, 2003.
    94. S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, D. J. Yang, Q. Wang, Q. Zhou, and J. Q. Li, Diamond Relat. Mater. 12 (2003) 8.
    95. W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S. Kerns, J. Vac. Sci. Technol. 19 (2001) 936.
    96. A. V. Karabutov, V. G. Ralchenko, I. I. Vlasov, R. A. Khmelnitsky, M. A. Negpdaev, V. P. Varnin, I. G. Teremetskaya, Diamond Relat. Mater. 10 (2001) 2178.
    97. F. Y. Chuang, W. C. Wang, H. F. Cheng, C. Y. Sun, and I. N. Lin, J. Vac. Sci. Technol. B 15 (1997) 2072.
    98. U. Hoffmann, A. Weber, C. –P. Klages, and T. Matthee, Carbon 37 (1999) 753.
    99. J. D. Lee, E. S. Cho, and S. J. Kwon, J. Vac. Sci. Technol. B 19 (2001) 954.
    100. J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, and C. Y. Park, J. Vac. Sci. Technol. B 21 (2003) 1120.
    101. C. J. Lee, T. J. Lee, and J. Park, Chem. Phys. Lett. 340 (2001) 413.
    102. Sung J, Kan MC, Huang JL, Chen KH. Thermally activated electron emission from nano-tips of amorphous diamond and carbon nano-tubes. Extended abstract, International conference on Metallurgical coatings and Thin Films, San Diego (California USA), 2003; 57.
    103. Robertson J, O’Reilly EP. Electronic and atomic structure of amorphous carbon. Phys Rev B 1987; 35(6):2946-57.
    104. Robertson J. Structural models of a-C and a-C:H. Diamond Relat Mater 1995; 4:297-301.
    105. Zhu W, Bower C, Kochanski GP, Jin S. Electron field emission from nanostructured diamond and carbon nanotubes. Solid-State Electronics 2001; 45:921-28.

    下載圖示 校內:2004-11-17公開
    校外:2004-11-17公開
    QR CODE