簡易檢索 / 詳目顯示

研究生: 孔文彥
Kung, Wen-Yen
論文名稱: 在無基板、觸媒與表面活性劑的水熱環境下成長不同形貌的氧化鋅微/奈米結構
Hydrothermal synthesis of ZnO micro/nano structures without the use of a substrate, catalysts, and surfactants
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 光子激發光水熱氧化鋅
外文關鍵詞: PL, Hydrothermal, ZnO
相關次數: 點閱:108下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用Zn4CO3(OH)6.H2O為前驅物,在無基板、觸媒與表面活性劑的水熱環境下,藉由改變水熱溶液的pH值,並控制溶液內成長物種的濃度,以合成出不同形貌的氧化鋅微/奈米結構,且進一步地探討其成長機制,及其對光子激發光特性的影響。
    前驅物Zn4CO3(OH)6.H2O是由片狀結構組成的顆粒,粒徑約為1.80um,裂解溫度為244℃。當水熱反應進行時,氧化鋅晶體是藉由均質成核與溶解-凝結的方式成長。因此,最後氧化鋅產物的形貌為沿著(002)晶面成長的微米棒狀結構,且平均直徑隨著水熱時間、溫度、壓力與前驅物含量的提升而增加。
    當溶液的pH值進一步地藉由添加不同含量的NaOH(aq)、(NH4)2CO3(aq)、HCl(aq)與Zn(NO3)2(aq)改變時,產物的形貌也將受到影響。對於NaOH(aq)的添加,隨著添加量的提升,氧化鋅晶體的形貌將由微米棒狀漸漸轉變為海膽狀、花狀與顆粒狀結構;(NH4)2CO3(aq)的添加則會產生片狀結構的Zn5(OH)6(CO3)2晶體;添加HCl(aq)將產生扇形結構的氧化鋅晶體;至於Zn(NO3)2(aq)的添加,最終產物為啞鈴狀結構的未知晶體與六角片狀結構的氧化鋅。
    此外,若適當地控制反應溶液內成長物種的濃度,便可有效地降低氧化鋅微米棒的直徑,因此直徑50nm且長度超過5um的高深寬比氧化鋅奈米線結構將能夠合成。
    最後,不同形貌的氧化鋅微/奈米結構對光激激發光譜的特性將被討論,對於微米棒狀、奈米線狀與海膽狀結構的波峰位於392nm,花狀結構位於403nm,以及扇形結構位於378nm。

    ZnO micro/nano structures which have different morphologies have been synthesized by a novel hydrothermal technique without substrates, catalysts, and surfactants. The precursor used in the hydrothermal reaction was zinc carbonate hydroxide hydrate, Zn4CO3(OH)6H2O. The growth of ZnO crystal was according to the homogeneous nucleation and the spontaneous growth of dissolution-condensation. Therefore the products of as-synthesized were ZnO microrods which grew along [002] direction. The average diameter was increased with increasing hydrothermal temperature, time, pressure, and precursor weight.
    The effect of pH value of the reaction solution on the morphology of products has been further studied. The pH value has been changed by adding NaOH(aq), (NH4)2CO3(aq), HCl(aq), or Zn(NO3)2(aq). For NaOH(aq) additive, urchin-like, flower-like, or particle structures have been obtained. On the other hand, with additives of (NH4)2CO3(aq), HCl(aq), and Zn(NO3)2(aq), sheet-like, fan-shaped, and dumbbell structures could be obtained, respectively.
    Besides, straight and long ZnO nanowires which were 50 nm in the diameter and over 5 um in the length were also synthesized by controlling Zn2+ concentration. Finally, PL spectra showed that the emission light of microrods, nanowires, and urchin structures was at 392 nm wavelengths. The emission light of flower and fan-shaped structures was at 403 nm and 378 nm, respectively.

    摘要..............................................Ⅰ Abstract..........................................Ⅱ 致謝..............................................Ⅲ 目錄..............................................Ⅳ 表目錄............................................Ⅶ 圖目錄............................................Ⅷ 第一章 緒論.......................................1 1-1 前言......................................1 1-2 研究動機與目的............................2 第二章 文獻回顧...................................3 2-1 氧化鋅簡介................................3 2-1-1 晶體結構............................3 2-1-2 光學性質............................5 2-1-3 電學性質............................6 2-2 水熱合成法................................7 2-2-1 水熱法簡介..........................7 2-2-2 基板成長法..........................8 2-2-3 無基板成長法........................9 2-3 水熱成長機制.............................12 2-3-1 氧化鋅奈米線成長機制...............12 2-3-2 均質成核理論.......................14 2-3-3 溶解-凝結成長理論..................18 第三章 實驗方法與分析概論........................21 3-1 實驗設計與流程...........................21 3-2 前驅物製備...............................22 3-3 水熱法合成...............................23 3-3-1 探討水熱條件對氧化鋅成長的影響.....23 3-3-2 探討添加物對對氧化鋅成長的影響.....24 3-3-3 合成高深寬比的奈米線...............26 3-4 表面形貌與微結構分析.....................27 3-4-1 X射線繞射分析......................27 3-4-2 掃描式電子顯微鏡分析...............29 3-4-3 穿透式電子顯微鏡分析...............31 3-5 光學性質分析.............................33 3-5-1 光子激發光光譜分析.................33 第四章 結果與討論................................34 4-1 前驅物特性分析...........................34 4-2 水熱條件對氧化鋅成長的影響...............37 4-2-1 水熱溫度效應.......................37 4-2-2 水熱時間效應.......................43 4-2-3 水熱壓力效應.......................47 4-2-4 前驅物含量效應.....................49 4-2-5 結語...............................51 4-3 添加物對氧化鋅成長的影響.................53 4-3-1 NaOH(aq)之添加.....................53 4-3-2 (NH4)2CO3(aq)之添加................59 4-3-3 HCl(aq)之添加......................63 4-3-4 Zn(NO3)2(aq)之添加.................69 4-3-5 結語...............................73 4-4 合成高深寬比的氧化鋅奈米線...............75 4-5 不同氧化鋅形貌對PL性質的影響.............79 第五章 結論......................................81 第六章 未來展望..................................82 第七章 參考文獻..................................83 自述.............................................89

    [1] H. Iechi, T. Okawara, M. Sakai, M. Nakanura, and K. Kudo, Electrical Engineering in Japan, 158(2007)49-55.
    [2] T. Minami, H. Sonohara, S. Takata, and I. Fukuda, Journal of Vacuum Science, 13(1995)1053.
    [3] D. R. Sahu, S. Y. Lin, and J. L. Huang, Applied Surface Science, 252(2006)7509.
    [4] F. Michelotti, A. Belardini, A. Rousseau, A. Ratsimihety, G. Schoer, and J. Mueller, Journal of Non-Crystalline Solids, 352(2006)2339.
    [5] B. Pradhan, S. K. Batabyal, A. J. Pal, Solar Energy Materials & Solar Cells, 91(2007)769.
    [6] D. Sridhar, J. Xie, J. K. Abragam, V. K. Varadan, and S. H. Choi, Proceedings of SPIE - The International Society for Optical Engineering, 6172(2006)617208.
    [7] R. Tena-Zaera, A. Katty, S. Bastide, C. Levy-Clement, B. O’Reqan, and V. Munoz-Sanjose, Thin Solid Films, 483(2005)372.
    [8] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, and S. Niki, Thin Solid Films, 431-432(2003)369.
    [9] P. Suri and R. M. Mehra, Solar Energy Materials and Solar Cells, 91(2007)518.
    [10] K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist, and A. Hagfeldt, Solar Energy Materials and Solar Cells, 73(2002)51.
    [11] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, Applied Physics Letters, 85(2004)5923.
    [12] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Applied Physics Letters, 84(2004)3654.
    [13] M. Pan, R. Ronson, J. Cloud, V. Rengarajan, W. Nemeth, A. Valencia, J. Gomez, N. Spencer, and J. Nause, Proceedings of SPIE - The International Society for Optical Engineering, 6122(2006)61220M.
    [14] J. Min-Chang, O. Byeong-Yun, H. Moon-Ho, L. Sang-Won, M. and Jae-Min, Small, 3(2007)568.
    [15] S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan, and Z. K. Tang, Applied Phtsics Letters, 88(2006)031911.
    [16] R. Konenkamp, R. C. Word, and C. Schlegel, Applied Physics Letters, 85(2004)6004.
    [17] J. Min-Chang, O. Byeong-Yun, H. Moon-Ho, L. Sang-Won, M. and Jae-Min, Small, 3(2007)568.
    [18] I. I. Novochinskii, C. Song, X. Ma, X. Liu, L. Shore, J. Lampert, and R. J. Farrauto, Energy and Fuels, 18(2004)576.
    [19] G. Cao, “Nanostructures and nanomaterials: synthesis, properties, and application”, Imperial College Press, 1st edition (2004)111.
    [20] T. Terasako and S. Shirakata, Japanese Journal of Applied Physics, 44(2005)L1410.
    [21] X. Xing, K. Zheng, H. Xu, F. Fang, H. Shen, J. Zhang, J. Zhu, C. Ye, G. Cao, D. Sun, and G. Chen, Micron, 37(2006)370.
    [22] S. W. Kim, S. Fujita, and S. Fujita, Applied Physics Letters, 86(2005)153119.
    [23] L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, J. Qi, Applied Physics Letters, 86(2005)024108.
    [24] A. Umar, E. K. Suh, and Y. B. Hahn, Solid State Communications, 139(2006)447.
    [25] H. Ham, G. Shen, J. H. Cho, T. J. Lee, S. H. Seo, and C. J. Lee, Chemical Physics Letters, 404(2005)69.
    [26] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, Journal of Sol-Gel Science and Technology, 39(2006)49.
    [27] G. Sun, M. Cao, Y. Wang, C. Hu, Y. Liu, L. Ren, and Z. Pu, Materials Letters, 60(2006)2777.
    [28] B. Liu and H. C. Zeng, Journal of the American Chemical Society, 125(2003)4430.
    [29] C. Liu, J. A. Zapien, Y. Yao, X. Menq, C. S. Lee, S. Fan, Y. Lifshitz, and S. T. Lee, Advanced Materials, 15(2003)838.
    [30] W. D. Zhang, Nanotechnology, 17(2006)1036.
    [31] J. Wang and L. Gao, Journal of Materials Chemistry, 13(2003)2551.
    [32] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D.Que, Journal of Physical Chemistry B, 108(2004)3955.
    [33] Y. H. Ni, X. W. Wei, X. Ma, and J. N. Hong, Journal of Crystal Growth, 283(2005)48.
    [34] Y. Shang, H. Liu, J. Xia, and Z. Xu, Journal of Dispersion Science and Technology, 26(2005)525.
    [35] Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, Journal of Physical Chemistry B, 110(2006)14714.
    [36] Q. Xie, Z. Dai, J. Liang, L. Xu, W. Yu, and Y. Qian, Solid State Communications, 136(2005)304.
    [37] W. Zheng, F. Guo, and Y. Qian, Advanced Functional Materials, 15(2005)331.
    [38] 王瑞琪,「新穎氧化鋅奈米材料的成長與光電性質」,國立成功大學材料科學及工程學系博士論文,2005。
    [39] Z. L. Wang, Journal of Physics: Condensed Matter, 16(2004) R829.
    [40] R. E. Hummel, “Electronic properties of materials”, Springer, 3rd edition (2001)207.
    [41] R. E. Hummel, “Electronic properties of materials”, Springer, 3rd edition (2001)216.
    [42] H. L. Hartnagel, A. K. Jain, and C. Jagadish, “Semiconduction transparent thin films”, Institute of Physics Publishing, 1st edition (1995)224.
    [43] D. A. Neamen, “Semiconductor physics and devices: basic principles”, Irwin, 3rd edition (2003)162.
    [44] H. L. Hartnagel, A. K. Jain, and C. Jagadish, “Semiconduction transparent thin films”, Institute of Physics Publishing, 1st edition (1995)138.
    [45] 朱聖凱,「水熱電化學法陽極沈積錳氧化物之電極製備及其特性分析」,國立成功大學材料科學及工程學系碩士論文,2004。
    [46] 江耀誠,「有機無機複合過度金屬磷(砷)酸鹽的水熱合成、晶體結構與性質研究」,國立成功大學材料科學及工程學系碩士論文,2004。

    [47] H. S. Nalwa, “Encyclopedia of nanoscience and nanotechnology”, American Scientific Publishers, 1(2004)818.
    [48] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Advanced Materials, 15(2003)464.
    [49] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Ed., 42(2003)3031.
    [50] H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, C. V. Thompson, and E. A. Fitzgerald, Applied Physics Letters, 87(2005)101908.
    [51] H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, and D. Que, Nanotechnology, 15(2004)522.
    [52] J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and C. Yan, Chemistry of Materials, 14(2002)4172.
    [53] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, Journal of Physical Chemistry B, 108(2004)3955.
    [54] Y. H. Ni, X. W. Wei, X. Ma, and J. M. Hong, Journal of Crystal Growth, 283(2005)45.
    [55] Y. Shang, H. Liu, J. Xia, and Z. Xu, Journal of Dispersion Science and Technology, 26(2005)525.
    [56] Q. Xie, Z. Dai, J. Liang, L. Xu, W. Yu, and Y. Qian, Solid State Communications, 136(2005)304.
    [57] Y. Tong, Y. Liu, C. Shao, Y. Liu, C. Xu, J. Zhang, Y. Lu, D. Shen, and X. Fan, Journal of Physical Chemistry B, 110(2006)14714.
    [58] C. Jiang, W. Zhang, G. Zou, W. Yu, and Y. Qian, Journal of Physical Chemistry B, 109(2005)1361.
    [59] M. Yang, G. Pang, L. Jiang, and S. Feng, Nanotechnology, 17(2006)206.
    [60] X. M. Sun, X. Chen, Z. X. Deng, and Y. D. Li, Materials Chemistry and Physics, 78(2002)99.
    [61] H. Huiying, Y. Wu, N. Lun, and C. Hu, Materials Science and Engineering A, 393(2005)80.
    [62] Y. H. Ni, X. W. Wei, J. M. Hong, and Y. Ye, Materials Science and Engineering B, 121(2005)42.
    [63] Y. Wang and M. Li, Materials Letters, 60(2006)266.
    [64] G. Cao, “Nanostructures and nanomaterials: synthesis, properties, and application”, Imperial College Press, 1st edition (2004)53.
    [65] G. Cao, “Nanostructures and nanomaterials: synthesis, properties, and application”, Imperial College Press, 1st edition (2004)111.
    [66] B. D. Cullity and S. R. Stock, “Elements of X-ray diffraction”, Prentice Hall, 3rd edition (2001)92, 187.
    [67] J. D. Verhoeven, “Scanning electron microscopy”, ASM Handbook, 10(1992)493.
    [68] B. Fultz and J. M. Howe, “Transmission electron microscopy and diffractometry od Materials, Springer, 2nd edition (2002)63, 74, 76.
    [69] G. S. Upadhyaya and R. K. Dube, “Problems in Metallurgical thermodynamics and kinetics”, Pergamon Press, 1st edition (1977)207.
    [70] W. Zheng, F. Guo, and Y. Qian, Advanced Functional Materials, 15(2005)331.

    下載圖示 校內:2008-07-26公開
    校外:2008-07-26公開
    QR CODE