簡易檢索 / 詳目顯示

研究生: 薛盈彰
Syue, Ying-Zhang
論文名稱: 阿拉伯芥受離層酸調控基因PMP22L啟動子之功能分析
Functional analysis of the Arabidopsis ABA-regulated PMP22L gene promoter
指導教授: 吳文鑾
Wu, Wen-Luan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 46
中文關鍵詞: 離層酸阿拉伯芥啟動子調控
外文關鍵詞: GUS, Arabidopsis, ABA, ABRE
相關次數: 點閱:108下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   離層酸為調控植物生長發育以及抗逆境的重要賀爾蒙,部份與抗逆境有關的基因受離層酸(abscisic acid, ABA)誘導表現,藉由轉錄調控因子(transcription factor)結合至啟動子上的ABA-responsive element (ABRE)轉錄調控序列(cis-element),誘導抗逆境基因表現。阿拉伯芥基因22 kDa peroxisomal membrane protein-like (PMP22L)具有2個ABREs並受離層酸及逆境誘導表現,其啟動子能持續活化β-glucuronidase (GUS)在成熟的花藥表現,並且受物理性傷害誘導在傷口周圍表現GUS,而10天大的轉殖株在離層酸作用之下,只在根延長區可以偵測到GUS表現,顯示PMP22L的表現具有組織特異性。因此本實驗以刪除啟動子序列的方式,探討PMP22L啟動子各區域調控基因表現的特性。首先由PMP22L轉譯起始密碼上游-1,086 bp到下游+2的啟動子序列,與植物cis-element資料庫(PLACE)進行比對,發現此序列含有多個與逆境有關的cis-elements: ABREs, activation sequence-1 (as-1), dehydration-responsive element (DRE), MYC或MYB factor recognition site以及W box。利用限制酶切割或PCR擴增方式,由5'端或3'端刪除序列,構築出不同長度的啟動子建構序列,分別接上GUS基因表現載體pBI101,並轉殖至阿拉伯芥。以離層酸處理轉殖株,發現缺失兩個ABREs (-630/-586)的轉殖株全株,皆不受離層酸誘導GUS表現,顯示ABREs是PMP22L受離層酸誘導表現所必須的。另外發現,-574/-565區域具有抑制基因於胚軸、根冠和莖頂分生組織表現的功能,推測含有ABREs 和as-1之-630/-565區域,為調控根部特異性表現所必須。接著對轉殖株的葉片進行物理性傷害觀察GUS表現的位置,發現含有W box的-801/-631區域是受物理性傷害誘導所必須的序列。最後觀察各轉殖株的花藥GUS表現,發現-1086/-888以及-801/-567區域,為花藥表現GUS所必須。綜合以上的結果,初步推測PMP22L啟動子含有多個正向或負向調控基因表現的序列,其中的-801/-567區域,調控基因於離層酸或物理性傷害誘導之下表現具有組織特異性,並且調控花藥表現時期的特異性。

     Phytohormone abscisic acid (ABA) regulates stress-responsive gene expression which is mediated by cis-elements named ABREs in their promoter regions. The 22 kDa peroxisomal membrane protein-like (PMP22L) gene promoter has two ABREs and responds to ABA and environmental stresses. GUS histochemical staining also indicated that PMP22L expression in the anthers of opened flowers and rapidly induced by wounding stress. In addition, the expression of PMP22L was also only detected in the roots of 10-day-old seedlings after ABA treatment. In this study, we functionally characterized the promoter region of PMP22L gene to understand regulation machinery of the PMP22L expression by transgenic plants using 5'- or 3'-deletion constructs fused to GUS reporter gene. Firstly, the PMP22L 1.1-kb DNA fragment of the putative promoter region was analysed by PLACE database and several stress-responsive elements: ABREs, activation sequence-1 (as-1), dehydration-responsive element (DRE), MYC or MYB factor recognition site and W box were found. Secondly, various promoter regions containing different stress-responsive elements were constructed. GUS activity was detected in the roots of transgenic plants transformed with full-lengh (-1,086/+2) and various 5'-deletion constructs after ABA treatment, except for the transgenic plants without the ABREs (-630/-586) in the promoter. This result indicated that ABRE was essential for ABA- induced PMP22L expression. The -574/-565 region may contain negative element required for inhibiting GUS activity in the root cap, hypocotyl and shoot apical meristem (SAM). These data showed that the -630/-565 region containing ABREs and as-1 was necessary for the root-specific expression. In addition, the -801/-631 region possessing W box was required for the wounding-induced gene expression. Two upstream regions, -1086/-888 and -801/-567, were necessary for gene expression in anthers. In conclusion, PMP22L expression was regulated by the combination of positive and negative regulatory elements in the promoter. The -801/-567 region may be a minimal ABA- or wounding-responsive unit and necessary for GUS activity in anthers.

    目錄 中文摘要……………………………………………………………….....i 英文摘要………………………………………………………………....ii 致謝……………………………………………………………………...iii 目錄……………………………………………………………………...iv 表目錄…………………………………………………………………...vi 圖目錄…………………………………………………………………..vii 縮寫字對照表………………………………………………………….viii 第一章 緒論.…………………………………………………………….1 一、離層酸 (abscisic acid, ABA)……………………………….…1 二、離層酸調控胚胎萌發與小苗發育……………………………1 三、離層酸與參與植物的抗逆境調控………………………...….2 四、離層酸參與物理性傷害產生的訊息傳遞路徑………...…….3 五、離層酸活化的基因調控路徑……………………………...….4 六、研究目的…………………………………………………..…..6 第二章 材料與方法…………………………………………………......8 一、阿拉伯芥的種植及環境逆境的處理……………………....…8 二、構築各種不同長度的PMP22L啟動子片段…………………8 a. 聚合酶連鎖反應(PCR)擴增建構片段…………….........….8 b. 檢測PCR產物……………………………………………..8 三、瓊脂凝膠中回收DNA片段…………………………………..9 四、啟動子建構片段接上質體yT&A……………………………..9 五、大腸桿菌DH5α菌株熱休克(heat shock)轉型實驗…………..9 六、微量製備質體DNA…………………………………………..10 a. 微量抽取…………………………………………………...10 b. 切割作用測試……………………………………………...10 七、核苷酸定序……………………………………………………10 八、阿拉伯芥轉基因實驗(transgenic Arabidopsis)……………….11 a. 質體之構築…………………………………………………11 b. 農桿菌(Agrobacterium tumefaciens)轉型實驗…………….11 c. 轉殖阿拉伯芥………………………………………………12 九、GUS染色………………………………………………………12 第三章 結果………………………………………………………….….13 一、PMP22L基因5'上游序列特性分析…………………………..13 二、 構築PMP22L啟動子片段並接上GUS報導基因……………13 三、PMP22L受離層酸誘導的組織特異性表現分析…………….15 四、PMP22L受物理性傷害誘導表現……………………………..16 五、PMP22L在花藥表現的時間性………………………………..17 第四章 討論……………………………………………………………..19 一、PMP22L受離層酸誘導表現具有組織特異性……………….19 二、PMP22L受到物理性傷害誘導在傷口處周圍表現………….21 三、PMP22L在花藥表現為多個cis-element調控的結果……….22 四、結論…………………………………………………………….23 第五章 參考文獻……………………………………………………......25 表目錄 表1.本實驗所使用的引子序列以及位置和用途…….………………...31 表2. PMP22L啟動子所含有已知cis-elements………………….……..32 圖目錄 圖1. PMP22L基因5'端上游序列分析………………………………......33 圖2.構築各種長度的PMP22L啟動子片段…………..………………...35 圖3. 35S -90-yT&A和pBI101質體圖譜…………………………….....36 圖4. PMP22L 5'端啟動子建構片段轉殖株離層酸誘導分析…………..37 圖5. PMP22L 3'端啟動子或是部份建構片段轉殖株離層酸誘導分析..39 圖6. PMP22L啟動子建構片段轉殖株水處理分析…………………....41 圖7. PMP22L啟動子不同長度建構片段進行物理性傷害逆境分析….42 圖8. PMP22L啟動子各種建構片段頂端花序表現情形……………….43 圖9. PMP22L啟動子全長與R2/L4建構片段的差異序列……….…...45 圖10.重新比對PMP22L中的MYB factor recognition site……..……..46

    Abe H., Urao T., Ito T., Seki M., Shinozaki K. and Yamaguchi-Shinozaki K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78.
    Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosokawa D. and Shinozaki K. (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 1859-1868.
    Anderson J.P., Badruzsaufari E., Schenk P.M., Manners J.M., Desmond O.J., Ehlert C., Maclean D.J., Ebert P.R. and Kazan K. (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16, 3460-3479.
    Asada K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639.
    Benfey P.N., Ren L. and Chua N.H. (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 8, 2195-2202.
    Brocard-Gifford I., Lynch T.J., Garcia M.E. Malhotra B. and Finkelstein R.R. (2004) The Arabidopsis thaliana abscisic acid-insensitive8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16, 406-421.
    Carrera E. and Prat S. (1998) Expression of the Arabidopsis abi1-1 mutant allele inhibits proteinase inhibitor wound-induction in tomato. Plant J. 15, 765-771.
    Cercós M., Gómez-Cadenas A. and Ho T.H. (1999) Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers: cis- and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J. 19, 107-118.
    Chen W. and Singh K.B. (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J. 19, 667-677.
    Cheng W.H., Endo A., Zhou L., Penney J., Chen H.C., Arroyo A., Leon P., Nambara E., Asami T., Seo M., Koshiba T. and Sheen J. (2003) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723-2743.
    Choi H., Hong J., Ha J., Kang J., and Kim S.Y. (2000). ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275, 1723-1730
    Denekamp M. and Smeekens S.C. (2003) Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol. 132, 1415-1423.
    Desikan R., A.-H.-Mackerness S., Hancock J.T. and Neill S.J. (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127, 159-172.
    Donald R.G.K. and Cashmore A.R. (1990) Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J. 9, 1717-1726.
    Eulgem T., Rushton P.J., Schmelzer E., Hahlbrock K. and Somssich I.E. (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J. 18, 4689-4699.
    Finkelstein R.R., Gampala S.S. and Rock C.D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14 (Suppl.), S15-S45.
    Finkelstein R.R. and Lynch T.J. (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599-609.
    Finkelstein R.R., Wang M.L., Lynch T.J., Rao S. and Goodman H.M. (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10, 1043-1054.
    Fukuda Y. and Shinshi H. (1994) Characterization of a novel cis-acting element that is responsive to a fungal elicitor in the promoter of a tobacco class I chitinase gene. Plant Mol. Biol. 24, 485-493.
    Garretón V., Carpinelli J., Jordana X. and Holuigu L. (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol. 130, 1516-1526.
    Giraudat J., Hauge B.M., Valon C., Smalle J., Parcy F. and Goodman H.M. (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 1251-1261.
    Gong M., Li Y.J. and Chen S.Z. (1998) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J. Plant Physiol. 153, 488-496.
    Hartmann U., Sagasser M., Mehrtens F., Stracke R. and Weisshaar B. (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol. 57, 155-171.
    Hattori T., Totsuka M., Hobo T., Kagaya Y. and Yamamoto-Toyoda A. (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol. 43, 136-140.
    Himmelbach A., Iten M. and Grill E. (1998) Signaling of abscisic acid to regulate plant growth. Philos. Trans. R. Soc. Lond. B. 353, 1439-1444.
    Hobo T., Asada M., Kowyama Y., and Hattori T. (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J. 19, 679-689.
    Hoth S., Morgante M., Sanchez J.P., Hanafey M.K., Tingey S.V. and Chua N.H. (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J. Cell Sci. 115, 4891-4900.
    Huang M.D. and Wu W.L. (2005) TMAC1, an Arabidopsis ABA-regulated gene encodes a PMP22 family protein and is up-regulated by abiotic and wounding stresses. unpublished data.
    Ishige F., Takaichi M., Foster R., Chua N.H. and Oeda K. (1999) A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J. 18, 443-448.
    Jacobsen S.E. and Olszewski N.E. (1991) Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiol. 97, 409-414.
    Jiang M. and Zhang J. (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 53, 2401-2410.
    Johnson C., Boden E., Desai M., Pascuzzi P. and Arias J. (2001) In vivo target promoter-binding activities of a xenobiotic stress-activated TGA factor. Plant J. 28, 237-243.
    Koornneef M., L´eon-Kloosterziel K.M., Schwartz S.H., Zeevaart J.A.D. (1998) The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol. Biochem. 36, 83-89.
    Koornneef M., Reuling G. and Karssen C.M. (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant 61, 377-383.
    Krawczyk S., Thurow C., Niggeweg R., Gatz C. (2002) Analysis of the spacing between the two palindromes of activation sequence-1 with respect to binding to different TGA factors and transcriptional activation potential. Nucleic Acids Res. 30, 775-781.
    Larkindale J. and Knight M.R. (2002) Protection against heat-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128, 682-695.
    Leon J., Rojo E. and Sanchez-Serrano J.J. (2001) Wound signalling in plants. J. Exp. Bot. 52, 1-9.
    Leung J., Bouvier-Durand M., Morris P.C., Guerrier D., Chefdor F. and Giraudat J. (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264, 1448-1452.
    Leung J., Merlot S. and Giraudat J. (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759-771.
    Liotenberg S., North H., Marion-Poll A. (1999) Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiol. Biochem. 37, 341-50.
    Llorente F., Oliveros J.C., Martinez-Zapater J.M., Salinas J. (2000) A freezing- sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 211, 648-55.
    Lopez-Molina L. and Chua N.H. (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol. 41, 541-547.
    Lopez-Molina L., Mongrand S. and Chua N.H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl Acad. Sci. USA 98, 4782-4787.
    Marcotte W.R.J., Russell S.H. and Quatrano R.S. (1989) Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1, 969- 976.
    Mason H.S., DeWald D.B. and Mullel J. (1993) Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5, 241- 251.
    Meyer K., Leube M.P. and Grill E. (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264, 1452-1455.
    Millar A.A. and Gubler F. (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17, 705-721.
    Murata Y., Pei Z.M., Mori I.C. and Schroeder J. (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13, 2513-2523.
    Narusaka Y., Nakashima K., Shinwari Z.K., Sakuma Y., Furihata T., Abe H., Narusaka M., Shinozaki K. and Yamaguchi-Shinozaki K. (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 34, 137-148.
    Mohanty B., Krishnan S.P., Swarup S., and Bajic V.B. (2005) Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Annals of Botany 96, 669-681.
    Ng D,W., Chandrasekharan M.B., Hall T.C. (2003) The 5' UTR negatively regulates quantitative and spatial expression from the ABI3 promoter. Plant Mol Biol. 54, 25-38.
    Niu X., Helentjaris T. and Bate N.J. (2002) Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14, 2565-2575.
    Oono Y., Seki M., Ishida J., Narusaka M., Fujita M., Nanjo T., Umezawa T., Kamiya A., Nakajima M., Enju A., Sakurai T., Ishida J., Akiyama K., Iida K., Maruyama K., Satoh S., Yamaguchi-Shinozaki K. and Shinozaki K. (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Integr. Genomics 2, 282-291.
    Orozco-Cárdenas M.L., Narvaez-Vásquez J. and Ryan C.A. (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13, 179-191.
    Orozco-Cárdenas M.L. and Ryan C. (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96, 6553-6557.
    Pastori G.M. and Foyer C.H. (2002) Common components networks, and pathways of cross-tolerance to stress. The central role of 'redox' and abscisic acid-mediated controls. Plant Physiol. 129, 460-468.
    Pei Z.M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E., and Schroeder J.I. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731-734.
    Preston J., Wheeler J., Heazlewood J., Li S.F. and Parish R.W. (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J. 40, 979- 995.
    Qin X.F., Holuigue L., Horvath D.M. and Chua N.H. (1994) Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell 6, 863-874.
    Qin X. and Zeevaart J.A. (1999) The 9-cisepoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. USA 96, 15354-15361.
    Robertson A.J., Ishikawa M., Gusta L.V. and MacKenzie S.L. (1994) Abscisic acid-induced heat tolerance in Bromus inermis Leyss cell-suspension cultures. Heat-stable, abscisic acid-responsive polypeptides in combination with sucrose confer enhanced thermostability. Plant Physiol. 105, 181-190.
    Rushton P.J., Torres J.T., Parniske M., Wernert P., Hahlbrock K. and Somssich I.E. (1996) Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 15, 5690-5700.
    Schroeder J.I., Kwak J.M. and Allen G.J. (2001) Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature 410, 327-330.
    Shen Q., and Ho T.H. (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7, 295-307.
    Suzuki M., Kao C.Y., McCarty D.R. (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9, 799-807
    Thompson A.J., Jackson A.C., Symonds R.C., Mulholland B.J., Dadswell A.R., Blake P.S., Burbidge A. and Taylor I.B. (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes overproduction of abscisic acid. Plant J. 23, 363-374.
    Thomashow M.F. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50, 571-599.
    Tugal H.B., Pool M. and Baker A. (1999) Arabidopsis 22-kilodalton peroxisomal membrane protein. Nucleotide sequence analysis and biochemical characterization. Plant Physiol. 120, 309-320.
    Washida H., Wu C.Y., Suzuki A., Yamanouchi U., Akihama T., Harada K. and Takaiwa F. (1999) Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol. 40, 1-12.
    Xiang C., Miao Z.H. and Lam E. (1996) Coordinated activation of as-1 type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol. Biol. 32, 415-426.
    Xiong L., Ishitani M., Lee H., Zhu J.K.. (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression. Plant Cell. 13, 2063-2083.
    Xiong L., Schumaker K.S. and Zhu J.K. (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14 (Suppl.), S165-S183.
    Yamaguchi-Shinozaki K. and Shinozaki K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264.
    Zabaleta E., Heiser V., Grohmann L. and Brennicke A. (1998) Promoters of nuclear encoded respiratory chain complex I genes from Arabidopsis thaliana contain a region essential for anther/pollen specific expression. Plant J. 15, 49-59.
    Zeevaart J.A.D. and Creelman R.A. (1988) Metabolism and physiology of abscisic acid. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39, 439-473.
    Zhu J.K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant. Biol. 53, 247-273.

    下載圖示 校內:2009-02-10公開
    校外:2009-02-10公開
    QR CODE