簡易檢索 / 詳目顯示

研究生: 蔡志信
Tsai, Chih-Hsin
論文名稱: 變截面管中稀薄噴霧火焰的熄滅分析
Extinction of Dilute Spray Flames in a Duct with Varying Cross-Sectional Area
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 118
中文關鍵詞: 稀薄噴霧拉伸Lewis數超焓燃燒
外文關鍵詞: spray flames, excess enthalpy, stretch
相關次數: 點閱:132下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      本研究利用高活化能極限近似微擾理論來探討具橫截面積改變的一維流場中一層流、穩態、稀薄、均一分佈之噴霧火焰的燃燒特性和熄滅現象,期望了解因橫截面積變化所引起之火焰拉伸(flame stretch)、噴霧液滴起始半徑大小、液態噴霧量、Lewis數(Lewis number)以及外部熱損失這五項參數對預混火焰熄滅現象與及超焓燃燒特性的影響。噴霧模式分為完全預蒸發及部份預蒸發兩種模式。分析對象包括含水噴霧之甲烷火焰、含水噴霧之丙烷火焰、含甲醇噴霧之甲醇火焰及含乙醇噴霧之乙醇火焰。液滴蒸發造成的內部熱傳導,對於含水噴霧之火焰為內部熱損失;對含燃料噴霧之貧油火焰,為內部熱獲得;對含燃料噴霧之富油火焰,則為內部熱損失。結果顯示含水噴霧之預混火焰之燃燒強度隨著噴霧量的增加或液滴起始半徑的減小而減弱,與Lewis數的大小無關。而對於含燃料噴霧之貧油火焰之燃燒強度則隨著噴霧量的增加或液滴起始半徑的減小而增強;而富油火焰則呈現相反的情況。負拉伸減弱Le<1的火焰燃燒強度,但增強Le>1的火焰燃燒強度;反之,正拉伸減弱Le>1的火焰燃燒強度,但增強Le<1的火焰燃燒強度。當外部熱損失為零,對於Le<1、承受正拉伸及Le>1、承受負拉伸之火焰,不會有熄滅現象出現。C型熄滅特徵曲線主要受到火焰拉伸及外部熱損失效應控制;而S型熄滅特徵曲線不同於C型熄滅特徵曲線,其主要受到內部熱損失效應控制。而對於超焓燃燒,貧油火焰的可燃極限區隨著噴霧量的增加或油滴起始半徑的減小而加大;富油火焰則是相反的趨勢;超焓燃燒火焰熄滅的位置,對於貧油火焰而言,隨著噴霧量的增加或油滴起始半徑的減少而增加;而富油火焰則是相反的趨勢。不論貧油或富油,超焓燃燒火焰熄滅的位置皆隨著外部熱損失的增加而減小,但是熄滅時的傳播質量流則幾乎相同。

    Abstract
     The influences of flame stretch, preferential diffusion, internal heat transfer and external heat loss on the extinction of dilute spray flames propagating in a duct with varying cross-sectional area are analyzed using activation energy asymptotics. A completely prevaporized mode and a partially prevaporized mode of flame propagation are identified. The internal heat transfer, which results from droplet gasification and varies with the liquid fuel loading and the initial droplet size of the spray, provides internal heat loss for rich sprays but heat gain for lean sprays. A spray flame propagating in divergent (convergent) duct experiences positive (negative) stretch. The results show that the burning intensity of a lean (or rich) spray is enhanced (or reduced) with increasing liquid fuel loading or decreasing initial droplet size. The positive stretch coupled with Lewis number (Le) weakens a lean methanol-spray flame (Le>1) but intensifies a rich methanol-spray flame (Le<1). For a Le<1 positively-stretched flame or a Le>1 negatively-stretched flame without external heat loss, no extinction occurs by increasing stretch effect. However, a Le>1 positively-stretched flame or a Le <1 negatively-stretched flame can be extinguished by increasing the stretch effect. Flame extinction characterized by a C-shaped curve is dominated by stretch or external heat loss. An S-shaped curve, which differs from the C-shaped one, indicates that flame extinction is governed by the internal heat loss. For excess enthalpy burning, it is found that the extent of flammability is enlarged with increasing liquid fuel loading or decreasing the initial droplet radius for lean sprays, while the opposite holds for rich sprays. However, extinction curves show that the flame position on extinction is decreased by increasing external heat loss, but the corresponding flame flux remains almost the same for both lean and rich flames.

    總目錄  I 表目錄  IV 圖目錄  V 符號說明  XI 一、前言 1 1-1 氣態火焰熄滅 2 1-2 一維噴霧火焰 4 1-2-1 無外部熱傳  5 1-2-2 有外部熱傳 5 1-2-3 超焓燃燒 7 1-3 二維停滯面噴霧火焰  9 1-4 二維本生燈噴霧火焰  12 1-5 研究目的 14 二、理論模式 16 2-1 含稀薄噴霧之預混火焰 16 2-1-1 幾何描述 16 2-1-2 基本假設 17 2-1-3 統御方程式  18 2-1-4 無因次化統御方程式 22 2-1-5 火焰外區展開  24 2-1-6 火焰內區展開  25 2-1-7 邊界及跳接條件 27 2-1-8 零階解及第一階解 28 2-1-9 最後解 30 2-2 超焓燃燒 32 2-2-1 幾何描述  32 2-2-2 無因次化統御方程式 33 2-2-3 邊界及跳接條件 33 2-2-4 最後解 34 2-3 參考數值與估算模式 36 2-3-1 參考數值 36 2-3-2 估算模式  37 三、結果與討論  41 3-1 含水噴霧之氣態火焰  42 3-1-1 貧油甲烷火焰與富油丙烷火焰(Le<1) 42 3-1-2 富油甲烷火焰與貧油丙烷火焰(Le>1) 44 3-2 無外部熱損失之燃料噴霧火焰 47 3-2-1 貧油甲醇火焰(Le>1) 47 3-2-2 富油甲醇火焰(Le<1) 48 3-2-3 富油乙醇火焰(Le>1) 50 3-3 具外部熱損失之燃料噴霧火焰 52 3-3-1 貧油甲醇火焰(Le>1) 52 3-3-2 富油甲醇火焰(Le<1) 53 3-4 含甲醇噴霧之超焓燃燒 56 3-4-1 絕熱超焓火焰 56 3-4-2 具外部熱損失之超焓火焰 58 四、結論  62 五、參考文獻  64 六、圖表  71

    五、參考文獻
    1. Coward, H.F., and Jones, G.W., “Limits of Flammability of Gases and Vapors,” U.S. Bureau of Mines Bull, p. 503, 1952.

    2. Spalding, D.B., Some Fundamentals of Combustion, Academic Press: New York, 1955.

    3. Spalding, D.B., “A Theory of Inflammability Limits and Flame Quenching,” Proceedings Royals Society of London, A240, p.83, 1957.

    4. Mayer, E., “A Theory of Flame Propagation Limits Due to Heat Loss,” Combust. Flame, Vol. 1, p. 438, 1957.

    5. Buckmaster, J.D., “The Quenching of Deflagration Waves,” Combust. Flame, Vol. 26, p. 151, 1976.

    6. Tien, T.H. and Matalon, M., “Effect of Swirl on Strained Premixed Flames for Mixtures with Lewis Number Distinct from Unity,” Combust. Sci. Tech., Vol. 87, p. 257, 1992.

    7. Kim, Y.D., and Matalon, M., “Propagation and Extinction of a Flame in a Stagnation-Point Flow,” Combust. Flame, Vol. 73, Issue 3, p. 303, 1988.

    8. Libby, P.A., Linan, A., and Williams, F.A., “Strained Premixed Laminar Flames with Nonunity Lewis number,” Combust. Sci. Tech., Vol. 34, p. 257, 1983.

    9. Sato, J., “Effects of Lewis Number on Extinction Behavior of Premixed flames in a Stagnation Flow,” Proc. Combust. Inst. 19, p. 1541, 1982.

    10. Ishizuka, S. and Law, C.K., “An Experimental Study on Extinction and Stability of Stretched Premixed Flames,” Proc. Combust. Inst. 19, p. 327, 1982.

    11. Tsuji, H. and Yamaoka, I, “Structure and Extinction of Near-Limit Flames in a Stagnation Flow,” Proc. Combust. Inst. 19, p. 1533, 1982.

    12. Sivashinsky, G.I., “Structure of Bunsen Flames,” J. Chem. Phys., Vol. 62, No. 2, p. 638, 1975.

    13. Sung, C.J., Yu, K.M. and Law, C.K., “On the Geometry and Burning Intensity of Bunsen Flames,” Combust. Sci. Tech., Vol. 100, p. 245, 1994.

    14. Sohrab, S.H., and Law, C.K., “Extinction of Premixed Flames by Stretch and Radiative Loss,” Int. J. Heat Mass Transfer, Vol. 27, p. 291, 1984.

    15. Mitani, T., “A Flame Inhibition Theory by Inert Dust and Spray,” Combust. Flame, Vol. 43, p. 243, 1981.

    16. Lin, T.H., Law, C.K., and Chung, S.H., “Theory of laminar Flame Propagation in Off-Stoichiometric Dilute Sprays,” Int. J. Heat Mass Transfer, Vol. 31, No. 5, p. 1023, 1988.

    17. Huang, C.L., Chiu, C.P., and Lin, T.H., “The Influence of Liquid Fuel on the Flame Propagation of Dilute Sprays in Non-Conserved Systems,” Journal of Chinese Society of Mechanical Engineering, Vol. 10, No. 5, p. 333, 1989.

    18. Liu, C.C., and Lin, T.H., “The Interaction Between External and Internal Heat Loss on the Flame Extinction of Dilute Sprays,” Combust. Flame, Vol. 85, p. 468, 1991.

    19. Hou, S.S., Liu, C.C., and Lin, T.H., “The Influence of External Heat Transfer on Flame Extinction of Dilute Sprays,” Int. J. Heat Mass Transfer, Vol. 36, No. 7, p. 1867, 1993.

    20. Hou, S.S, and Tseng, C.H., “The Influence of Downstream External Heat Loss on Extinction of Dilute Spray flames,” Int. Comm. Heat Mass Transfer, Vol. 26, No. 5, p. 705, 1999.

    21. Hou, S.S, “The Interaction Between Upstream and Downstream Heat Transfer on the Burning and Extinction of Dilute Spray Flames,” JSME International Journal, Series B, Vol. 42, No. 4, p. 691, 1999.

    22. Weinberg, F.J., “Combustion Temperature: The Nature?,” Nature, Vol. 43, p. 243, 1971.

    23. Lloyd, S.A., and Weinberg, F.J., “A Burner for mixture of Very Low Heat Content,” Nature, Vol. 251, p. 47, 1974.

    24. Lloyd, S.A., and Weinberg, F.J., “Limits to Energy Release and Utilization from Chemical Fuels,” Nature, Vol. 257, p. 367, 1975.

    25. Lloyd, S.A., and Weinberg, F.J., “A Recirculating Fluidized Bed Combustor for Extended Flow Regimes,” Combust. Flame, Vol. 27, p. 391, 1976.

    26. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combust. Sci. Tech., Vol. 20, p. 73, 1979.

    27. Takeno, T., Sato, K., and Hase, K., “A Theoretical Study on an Excess Enthalpy Flame,” Proc. Combust. Inst. 18, p. 465, 1981.

    28. Buckmaster, J., and Takeno, T., “Blow-Off and Flashback of an Excess Enthalpy Flame,” Combust. Sci. Tech., Vol. 25, p. 153, 1981.

    29. Takeno, T., and Hase, K., “Effects of Solid Length and Heat Loss on an Excess Enthalpy Flame,” Combust. Sci. Tech., Vol. 31, p. 207, 1983.

    30. Barra, A.J. and Ellzey, J.L., “Heat Recirculation and Heat Transfer in Porous Burners,” Combust. Flame, Vol. 137, p. 230, 2004.

    31. Katani, Y., and Takeno, T., “An Experimental Study on Stability and Combustion Characteristics of an Excess Enthalpy Flame,” Proc. Combust. Inst. 19, p. 1503, 1982.

    32. Kanati, Y., Behbahani, H.F., and Takeno, T., “An Excess Enthalpy Flame Combustion for Extended Flow Range,” Proc. Combust. Inst. 20, p. 2025, 1984.

    33. Hashimoto, T., Yamasaki, S., and Takeno, T., “ An Excess Enthalpy Flame Stabilized un Ceramic Tubes,” AIAA, p. 57, 1983.

    34. Tanaka, R., Shinoda, M. and Arai, N., “Combustion Characteristics of a Heat-Recirculating Ceramic Burner Using a Low-Calorific-Fuel,” Energy Conversion and Management, Vol. 42, p. 1897, 2001.

    35. Sitzki, L., Borer, K., Schuster, E., Ronney, P.D. and Wussow, S., “Combustion in Microscale Heat-Recirculating Burner,” The Third Asia-Pacific Conference on Combustion, 2001.

    36. Hou, S.S., and Lin, T.H., “A Theory on Excess-Enthalpy Spray Flame,” Atomization and Sprays, Vol. 9, p. 355, 1999.

    37. Lin, J.C. and Hou, S.S., “Analysis of Non-Adiabatic Excess Enthalpy Spray Flames,” Energy Conversion and Management, Vol. 46, p. 2873, 2005.

    38. Liu, C.C., Lin, T.H., and Tien, J.H., “Extinction Theory of Stretched Flames by Inert Sprays,” Combust. Sci. Tech., Vol. 91, p. 309, 1993.

    39. Hou, S.S., and Lin, T.H., “Extinction of stretched Spray Flames with Nonunity Numbers in a Stagnation-Point Flow,” Proc. Combust. Inst. 27, p. 2009, 1998.

    40. Hou, S.S., and Lin, T.H., “Effects of Internal Heat transfer and Preferential Diffusion on Stretched Spray Flames,” Int. J. Heat Mass Transfer, Vol. 44, p. 4391, 2001.

    41. Chen, Z.H., Lin, T.H., and Sohrab, S.H., “Combustion of Liquid Fuel Sprays in Stagnation-Point Flow,” Combust. Sci. Tech., Vol. 60, p. 63, 1988.

    42. Hou, S.S., “The Interaction between Internal Heat Loss and External Heat Loss on the Extinction of Stretched Spray Flames with Nonunity Lewis Number,” Int. J. Heat Mass Transfer, Vol. 46, p. 311, 2003.

    43. Hou, S.S., “The Quenching of Spray Flames by Stretch and Heat Loss,” JSME International Journal, Series B, Vol. 46, No. 2, 2003.

    44. Sivashinsky, G.I., “The Diffusion Stratification Effect in Bunsen Flames,” Journal of Heat Transfer, Vol. 96, p. 530, 1974.

    45. Buckmaster, J., “A Mathematical Description of Open and Closed Flame Tips,” Combust. Sci. Tech., Vol. 20, p. 33, 1979.

    46. Mikolaitis, D.W., “The Interaction of Flame Curvature and Stretch, Part 2: The Convex Premixed Flame,” Combust. Flame, Vol. 58, p. 23, 1984.

    47. Mizomoto, M., Asaka, Y., Ikai, S. and Law, C.K., “Effects of Preferential Diffusion on the Burning Intensity of Curved Flames,” Proc. Combust. Inst. 20, p. 1933, 1984.

    48. Mizomoto, M. and Yoshida, H., “Effects of Lewis Number on the Burning Intensity of Bunsen Flames,” Combust. Flame, Vol. 70, p. 47, 1987.

    49. Lin, J.C., Hou, S.S., and Lin, T.H., “A Theoretical Study on Bunsen Spray Flames,” Int. J. Heat Mass Transfer, Vol. 46, No. 6, p. 963, 2003.

    50. Lin, J.C., and Lin, T.H., “Influence of Water Spray on Normal and Inverted Bunsen Flame,” Combust. Sci. Tech., Vol. 175, p. 1263, 2003.

    51. Hou, S.S., and Lin, J.C., “The Influence of Preferential Diffusion and Stretch on the Burning Intensity of a Curved Flame Front with Fuel Spray,” Int. J. Heat Mass Transfer, Vol. 46, No. 26, p. 5073, 2003.

    52. Law, C.K. and Chung, S.H., “An Ignition Criterion for Droplets in Sprays,” Combust. Sci. Tech., Vol. 22, p. 17, 1980.

    53. Williams, F.A., Combustion Theory, Second Edition, Benjamin Cummings, Menlo Park, CA, 1985.

    54. Buckmaster, J.D., Ludford, G.S.S., Theory of Laminar Flame, Cambridge University Press, Cambridge, England, 1982.

    55. Tien, J.H., “Effects of Flame Stretch on Premixed Flame Propagation in a Closed Tube,” Combust. Flame, Vol. 107, p. 303, 1996.

    56. Reid, R.C., Prausnitz, J.M. and Sherwood, T.K., The Properties of Gases and Liquids, Third Edition, McGraw Hill, New York, p. 544, 1977.

    57. Reid, R.C., Prausnitz, J.M. and Sherwood, T.K., The Properties of Gases and Liquids, Third Edition, McGraw Hill, New York, p. 226, 1977.

    58. Wark, K., Thermodynamics, Fourth Edition, McGraw Hill, New York, p. 398, 1983.

    59. Reid, R.C., Prausnitz, J.M. and Sherwood, T.K., The Properties of Gases and Liquids, Third Edition, McGraw Hill, New York, p. 470, 1977.

    60. Rosner, D.E., Transport Processes in Chemically Reacting Flow Systems, Butterworth Publishers, Stoneham, MA, p. 113, 1986.

    下載圖示 校內:2006-08-04公開
    校外:2006-08-04公開
    QR CODE