| 研究生: |
蘇福生 Su, Fu-Sheng |
|---|---|
| 論文名稱: |
利用動力學模擬粒子被靜電離子聲震波加速之行為 Kinetic simulation of particle acceleration by electrostatic ion acoustic shock |
| 指導教授: |
西村泰太郎
Yasutaro Nishimura |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 粒子網格法模擬 、正電離子聲震波 、蘭道阻尼隨時間消散 、粒子加速 |
| 外文關鍵詞: | Particle-in-Cell simulation, Ion acoustic shock wave, Landau damping as temporal dissipation, Particle acceleration |
| 相關次數: | 點閱:112 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用粒子網格法(Particle-in-Cell法)模擬正電離子聲震波。探討並分析磁聲震波和正電離子聲震波的差別。此外還以馬赫數和密度不連續性為基準去討論正電離子聲孤立波和正電離子聲震波的差別。討論了利用網格法模擬的結果,第一,建立了Langmuir wave動力學的基準,第二,在網格法模擬中加入正電離子來產生正電離子聲波。基於基準,在初始速度中加入了飄移速度,且飄移速度超過聲速。利用KdV方程式去對非線性和分散作用進行了討論而在粒子網格法模擬中也作了同樣的分析。在產生震波的部分,我們利用電漿鞘來當邊界,且利用兩種方法來產生密度不連續性和正電離子聲震波。其中一個方法是通過利用電漿鞘來反射正電離子,而另一個方法是利用兩道正電離子束打向相反方且對著彼此。而在這個研究中我們專注在電場的詳細生成機制和粒子的加速機制,用來了解那些在破壞性的太陽事件中帶電粒子的加速方式。
Ion acoustic shock waves by self-consistent Particle-in-Cell (PIC) simulation is studied. The difference and the analogy between magnetosonic shock waves and ion acoustic shock waves are discussed. Furthermore, the threshold between ion acoustic solitons and the shock waves is discussed in terms of Mach number and density discontinuities. The PIC simulation results are discussed, first for the benchmark of Langmuir wave dynamics, and second for ion acoustic wave dynamics by incorporating ions into the PIC code. Based on the benchmark, initial drift velocity of ions which exceeds the sound speed is incorporated. Employing KdV equation, roles of the nonlinearity and dispersion is discussed which is also revisited in PIC simulation. For the shock generation, we take advantage of plasma sheath near a fixed boundary. Two methods to create the density discontinuity and generate the ion acoustic shocks are taken. One is by utilizing the sheath and reflected ions, and the other is by collision of two ion beams moving in the opposite directions. We focus on the detailed generation mechanism of the electric field, and particle acceleration mechanism in this study, aiming at understanding of charged particle acceleration observes at disruptive solar events.
1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. (Dover, New York, 1970), p. 933.
2. A. Balogh and R. A. Treumann, Physics of Collisionless Shocks: Space Plasma Shock Waves. (Springer, New York, 2013), p. 333.
3. C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation. (IoP publishing, Bristol, 1986), p.13.
4. I. B. Bernstenin, J. M. Greene, and M. D. Kruskal, “Exact Nonlinear Plasma Oscillations”, Phys. Rev. 108, 546 (1957).
5. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (Plenum, New York, 1974), pp. 127-130, pp. 249-254.
6. D. W. Forslund and C. R. Shonk, “Formation and Structure of Electrostatic Collisionless Shocks”, Phys. Rev. Lett. 25, 25 (1970).
7. D. W. Forslund and J. P. Freidberg, “Theory of Laminar Collisionless Shocks”, Phys. Rev. Lett 1189, 18 (1971).
8. C. W. Huang, Y. C. Chen, and Y. Nishimura, “Particle-in-Cell Simulation of Plasma Sheath Dynamics With Kinetic Ions”, IEEE Transactions on Plasma Science 43, 675 (2015); C. W. Huang, “Particle-In-Cell Simulation of Asymmetric Secondary Electron Emission in Plasma Processing”, Master’s thesis, National Cheng Kung University, 2014 (unpublished); Y. C. Chen, “Particle-In-Cell Simulation of Asymmetric Secondary Electron Emission in Plasma Processing”, ibid, 2014 (unpublished); T. L. Lin, “Particle-In-Cell Simulation of Two Dimensional Trench Geometry in Capacitively Coupled Plasma”, ibid, 2015 (unpublished).
9. M. Hoshino, “Nonthermal electrons at high Mach number shocks: electron shock surfing acceleration”, Astrophysical Journal 572, 880 (2002).
10. Y. Inoue and H. Takabe, “The condition of the formation of ion acoustic shock waves made by HeII plasma”, Annual Progress report of Institute of Laser Engineering, Osaka University, 151, 2006 (unpublished).
11. D. J. Korteweg and G. de Vries, “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves”, Philosophical Magazine 39, 422 (1895).
12. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, 2nd ed. (Springer, Berlin, 1995), p. 96.
13. A. J. Lichtenberg and M.A. Liebermann, Regular and Chaotic Dynamics, 2nd ed. (Springer, New York, 1992), p. 57.
14. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. (John Wiley and Sons, Hoboken, 2005), p. 167.
15. T. Liseykina, G. Dudnikova, V. Vshivkov, M. Malkov, “Ion-acoustic shocks with reflected ions: modeling and PIC simulations”, Journal of Plasma Physics 81, 5 (2015).
16. D. R. Nicholson, Introduction to Plasma Theory, 2nd ed. (Krieger, Melbourne, 1992), pp. 138-141, pp. 164-165, pp. 171-177.
17. Y. Ohsawa, “Ultratelativistic particle acceleration in collisionless shock waves” Physics Reports 536, 149 (2014).
18. D.V. Reames, “Particle Acceleration by CME-Driven Shock” NASA report, 1999 (unpublished).
19. W. J. M. Rankine, “On the thermodynamic theory of waves of finite longitudinal disturbances”, Philosophical Transactions of the Royal Society of London 160, 277 (1870).
20. M. Scholer, K. J. Trattner and H. Kucharek, “Ion injection and Fermi acceleration at earth's bow shock” Astrophysical Journal 395, 657 (1984).
21. R. Z. Sagdeev, “Cooperative Phenomena and Shock Waves in Collisionless Plasmas”, Reviews of Plasma Physics 4, 23 (1966).
22. D. A. Tidman and N. A. Krall, Shock waves in collisionless plasmas. (Wiley, New York, 1970), pp. 99-106.
23. M. Toida and Y. Ohsawa, “Simulation studies of acceleration of heavy ions and their elemental compositions”, Solar Physics 171, 161 (1997).
24. R. A. Treumann, Advance Space Plasma Physics. (Imperial College Press, London, 1997), p. 75.
25. N. J. Zabusky and M. D. Kruskal, “Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States”, Phys. Rev. Lett. 15, 240 (1965).