| 研究生: |
林家禾 Lin, Chia-Ho |
|---|---|
| 論文名稱: |
杏仁核体神經細胞去增益現象的作用機轉及薑黃素衍生物誘導神經細胞凋亡之探討 Mechanisms of Depotentiation in the amygdala neurons and gingerdione derivative I6-induced neuronal apoptosis |
| 指導教授: |
簡伯武
Gean, Po-wu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 杏仁核體 、去增益現象 、薑黃素 、神經細胞凋亡 |
| 外文關鍵詞: | Gingerdione, Depotentiation, Amygdala, Neuronal apoptosis |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如果說在杏仁核體所表現突觸間傳導的長期增益現象是代表著恐懼記憶的形成,那麼杏仁核體所表現長期增益現象的逆轉(就是所謂的去增益現象)對於焦慮以及創傷後的壓力症候群的改善可能是一個相當重要的機轉。我們將5Hz 3分鐘的低頻電刺激給予到external capsule,結果在杏仁核體的側核區(LA)可以將強直性電刺激所誘導的長期增益現象逆轉成去增益現象,此過程需要NMDA接受體的活化與L-型 鈣離子通道的參與,但是與adenosine A1或group II metabotropic glutamate receptors (mGluRII)無關。當直接將去磷酸酶 calcineurin抑制劑灌注到細胞外或是注入細胞內時,去增益現象的表現會被阻斷。相同的低頻電刺激條件參數給予到活體動物的杏仁核體時,也能夠減弱了恐懼記憶的表現及減少恐懼訓練後Akt和MAP kinase磷酸化的程度。由上述的結果可知,低頻電刺激誘發杏仁核體產生去增益現象主要是經由活化calcineurin的訊息傳遞路徑所致。在杏仁核體的LA使用DCG-IV將mGluRII活化也可以成功的將強直性電刺激所誘發的長期增益現象逆轉成去增益現象,此過程中不需要NMDA接受體或是L-型鈣離子通道的活化,去磷酸脢 calcineurin 的活性也沒有涉及在其中,但是需要突觸前的活性以及細胞外Ca++的參與。DCG-IV 誘發杏仁核體LA產生去增益現象會抑制自發性微型興奮性突觸後電流(mEPSC)產生的頻率,但不影響mEPSC的大小,且可以被內生性釋放的glutamate所模倣。DCG-IV能夠抑制4-AP所誘發的glutamate釋放,但沒辦法抑制ionomycin所誘發的glutamate之釋放,這表示DCG-IV的作用並不是經由影響Ca2+進入細胞內的下游所致。透過評估恐懼驚嚇指數的方式,我們將mGluRII的作用劑直接打入杏仁核體,結果發現恐懼記憶的固化會受到抑制。因此,我們確認了DCG-IV誘導去增益現象的性質,並且也發現DCG-IV 在腦切片上所誘發的去增益現象與其減弱恐懼記憶的作用間存在著密切平行的關係。
I6 ,是一個由薑黃素 (Gingerdione) 所衍生的半合成化合物,它具有對抗血癌細胞生長的效果。 目前我們利用MTT代謝分析法來評估I6是否也會影響體外培養的新生鼠大腦皮質神經細胞之存活率,結果發現I6能夠明顯的減少皮質神經細胞的存活率,而且所誘導的皮質神經細胞死亡具有劑量依賴效應。細胞核染劑Hoechst 33323 與 TUNEL呈色反應法的實驗結果顯示I6所誘導的皮質神經細胞的死亡是一種凋亡的現象。我們使用了幾種caspase抑制劑,包括Z-VAD-FMK (能夠滲入細胞內的廣效性caspase 抑制劑) 以及Ac-DMQD-CHO (能夠滲入細胞內的專一興性caspase-3 抑制劑) 來觀察它們對I6誘發神經細胞死亡的影響。結果顯示,10 M 的Z-VAD-FMK並不影響細胞的存活率,只有在高濃度(100 and 200 M)的情況下,Z-VAD-FMK稍微增加細胞的存活率。相較之下Ac-DMQD-CHO對於細胞的存活率並無明顯的影響,這表示caspase-3在I6誘發神經細胞死亡的過程中可能不是主要的調控者。
抗氧化劑維他命E ,glutathione及 N-acetylcysteine (NAC)能夠阻止I6引起的神經細胞死亡,這表示NAC對神經細胞的保護作用至少有一部分是來自它的抗氧化性質。當皮質神經細胞給予NAC處理後會明顯增加p44與p42的磷酸化程度,而NAC對經細胞的保護作用會被MEK抑制劑U0126減弱,這表示NAC所誘發的p44/42磷酸化與它對神經細胞的保護作用存在著平行的關係。NAC也出乎意料之外的增加p38 MAPK的磷酸化而且NAC對神經細胞的保護作用會被專一性的p38 MAPK抑制劑以劑量有關的方式減弱。NAC所誘發的p38 MAPK磷酸化會被U0126 完全阻斷,但是NAC所誘發的ERK磷酸化並不受p38 MAPK抑制劑影響。我們的實驗結果首度證明了NAC能夠連續的活化ERK與p38 MAPK而且ERK與p38 MAPK一起媒介NAC對神經細胞的保護作用。
If fear memory is expressed by a long-term potentiation (LTP) of synaptic transmission in the amygdala, then reversal of LTP (depotentiation) in this area of the brain may provide an important mechanism for amelioration of anxiety and post-traumatic stress disorder. we find that low-frequency stimulation (LFS) of the external capsule elicits a depotentiation in the lateral nucleus of the amygdala. The induction of depotentiation requires activation of N-methyl-D-aspartate receptors and voltage-dependent calcium channels but is independent of adenosine A1 and group II metabotropic glutamate receptors (mGluRII). Extracellular perfusion or loading cells with protein phosphatase(PP) 2B (calcineurin) inhibitors prevents depotentiation. The same stimulating protocol applied to the amygdala in vivo attenuates the expression of fear memory measured with fear-potentiated startle and reduces conditioning-elicited phosphorylation of Akt and mitogen-activated protein kinase (MAPK). This is paralleled by an increase in the activity of calcineurin. In addition, application of calcineurin inhibitor blocks LFS-induced extinction of fear memory and MAPK dephosphorylation. Taken together, this study characterizes the properties of LFS-induced depotentiation in the amygdala and suggests an involvement of calcineurin cascade in synaptic plasticity and memory storage.
Activation of mGluR II with DCG-IV induces depotentiation in the LA. The induction of depotentiation is independent of NMDA receptors, L-type Ca2+ channels and calcineurin activity but requires presynaptic activity and extracellular Ca2+. DCG-IV depotentiation is accompanied by a decrease in the frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and could be mimicked by endogenously released glutamate. DCG-IV inhibited the release of glutamate evoked by 4-AP but not by ionomycin suggesting that the effect of DCG-IV is not mediated by an action downstream of Ca++ entry. Intra-amygdala infusion of mGluR II agonist blocks the consolidation of fear memory measured with fear-potentiated startle. Taken together, the present study characterizes the properties of DCG-IV depotentiation and reveals a close parallel between depotentiation in the amygdala slice and the reduction of conditioned fear in animals.
1-(3,4-Dimethoxyphenyl)-3,5-dodecenedione (I6), a gingerdione derivative, was synthesized in China Medical University laboratory, which has been demonstrated to be an effective anti-tumor agent in leukemia cell line. In the present study, we found that I6 also could induce a concentration-dependent decrease in cortical neuron viability measured by MTT assay . The I6-induced neuronal death exhibits apoptotic features by Hoechst staining and TUNEL reaction. we examine the effects of various caspase inhibitors on I6-induced cell death. These included Z-VAD-FMK, a cell-permeable broad-spectrum caspase inhibitor, and Ac-DMQD-CHO, a cell-permeable caspase-3 inhibitor. The result shows that ZVAD-FMK at 10 M do not affect cell survival . Only at higher concentrations (100 and 200 M) do ZVAD-FMK slightly increase the cell survival . By contrast, cell survival was not significantly affected by Ac-DMQD-CHO , suggesting that caspase-3 may not play a major role in I6 stimulated cell death.
The antioxidants vitamin E, glutathione and N-acetylcysteine (NAC) prevent I6-mediated neuronal death, suggesting that antioxidant activity accounted, at least in part, for the neuroprotective effect of NAC. Treatment of cortical neurons with NAC significantly increased phosphorylated levels of p42 and p44 ERKs. In parallel, MEK inhibitor U0126 completely attenuated neuroprotective effect of NAC. Unexpectedly, NAC also increased phosphorylated level of p38 MAPK and p38 specific inhibitors dose-dependently attenuated neuroprotective effect of NAC. U0126 completely abolished NAC-induced p38 phosphorylation. Conversely, p38 inhibitor did not influence NAC-induced ERK phosphorylation. These results demonstrate for the first time that NAC serially activates ERKs and p38 MAPK, and ERKs and p38 work together to mediate the neuroprotective effect of NAC.
1 Huang Y-Y and Kandel ER (1998) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21:169–178.
2 Larson J, Xiao P, and Lynch G (1993) Reversal of LTP by theta frequency stimulation. Brain Res 600:97–102.
3 Fujii S, Sekino Y, Kuroda Y, Sasaki H, Ito KI, and Kato H (1997) 8-Cyclopentyltheophylline, an adenosine A1 receptor antagonist, inhibits the reversal of long-term potentiation in hippocampal CA1 neurons. Eur J Pharmacol 331:9–14.
4 De Mendonca A, Almeida T, Bashir ZI, and Bebeiro JA (1997) Endogenous adenosine attenuates long-term depression and depotentiation in the CA1 region of the rat hippocampus. Neuropharmacology 36:161–167.
5 Dunwiddie TV, Hoffer BJ, and Fredholm BB (1981) Alkylxanthines elevate hippocampal excitability: evidence for a role of endogenous adenosine. Naunyn-Schmiedeberg’s Arch Pharmacol 316:326–330.
6 Li H, Weiss SRB, Chuang DM, Post RM, and Rogawski MA (1998) Bidirectional synaptic plasticity in the rat basolateral amygdala: characterization of an activitydependent switch sensitive to the presynaptic metabotropic glutamate receptor antagonist 2S--ethylglutamic acid. J Neurosci 18:1662–1670.
7 Weisskopf MG, Bauer EP, and LeDoux JE (1999) L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci 19:10512–10519.
8 Christie BR, Schexnayder LK, and Johnston D (1997) Contribution of voltage-gated Ca2+-channels to homosynaptic long-term depression in the CA1 region in vitro.J Neurophysiol 77:1651–1655.
9 Kapur A, Yeckel MF, Gray R, and Johnston D (1998) L-type calcium channels arerequired for one form of hippocampal mossy fiber LTP. J Neurophysiol 79:2181–2190.
10 Morgan SL and Teyler TJ (1999) VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J Neurophysiol 82:736–740.
11 O’Dell T and Kandel E (1994) Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learn Mem 1:129–139.
12 Staubli U and Chun D (1996) Factors regulating the reversibility of long-term potentiation. J Neurosci 16:853–860.
13 Zhuo M, Zhang W, Son H, Mansuy I, Sobel RA, Seidman J, and Kandel ER (1999) A selective role of calcineurin Aαin synaptic depotentiation in hippocampus. Proc Natl Acad Sci USA 96:4650–4655.
14 Liu J, Farmker JD, Lane WS, Friedman J, Weissman I, and Schreiber SL (1991)Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815.
15 Wang JH and Kelly PT (1997) Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. J Neurosci 17 :4600–4611.
16 Lin CH, Yeh HW, Lin CH, Lu KT, Leu TH, Chang WC, and Gean PW (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31:841–851.
17 Huang Y-Y, Martin KC, and Kandel ER (2000) Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 20:6317–6325.
18 Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, and LeDoux JE (2000) Activation of ERK/MAPK kinase in the mygdale is required for memory consolidation of Pavlovian fear conditioning. J Neurosci 20:8177–8187.
19 Lin CH, Yeh HW, Lin CH, Lu KT, Leu TH, Chang WC, and Gean PW (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31:841–851.
20 Morgan SL and Teyler TJ (1999) VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J Neurophysiol 82:736–740.
21 Fujii S, Saito K, Miyakawa H, Ito K, and Kato H (1991) Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA 1 neurons of guinea pig hippocampal slices. Brain Res 555:112–122.
22 Fujii S, Sekino Y, Kuroda Y, Sasaki H, Ito KI, and Kato H (1997) 8-cyclopentyltheophylline, an adenosine A1 receptor antagonist, inhibits the reversal of long-term potentiation in hippocampal CA1 neurons. Eur J Pharmacol 331:9–14.
23 Otmakhova NA and Lisman JE (1998) D1/D5 dopamine receptors inhibit depotentiation at CA1 synapses via cAMP-dependent mechanism. J Neurosci 18:1270–1279.
24 Davis M, Falls WA, Campeau S, and KimM(1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58:175–198.
25 Campeau S and Davis M (1995) Involvement of subcortical and cortical afferents to the lateral nucleus of the mygdale in fear conditioning measured with auditory and visual conditioned stimuli. J Neurosci 15:2312–2327.
26 Andjelkovic M, Jakubowicz T, Cron P, Ming XF, Han JW, and Hemmings BA (1996) Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA 93:5699–5704.
27 Millward TA, Zolnierowicz S, and Hemmings BA (1999) Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 24:186–191.
28 Zhuo M, Zhang W, Son H, Mansuy I, Sobel RA, Seidman J, and Kandel ER (1999) A selective role of calcineurin A_ in synaptic depotentiation in hippocampus. Proc Natl Acad Sci USA 96:4650–4655.
29 Yakel JL (1997) Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci 18:124–134.
30 Calton JL, Kang M-H, Wilson WA, and Moore SD (2000) NMDA-receptor-dependent synaptic activation of voltage-dependent calcium channels in basolateral amygdala. J Neurophysiol 83:685–692.
31 Huang Y-Y and Kandel ER (1998) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21:169–178.
32 Lin CH, Yeh HW, Lin CH, Lu KT, Leu TH, Chang WC, and Gean PW (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31:841–851.
33 Weisskopf MG, Bauer EP, and LeDoux JE (1999) L-type voltage-gated calciumchannels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci 19:10512–10519.
34 Bauer EP, Schafe GE, and LeDoux JE (2002) NMDA receptors and L-type voltagegated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 22:5239–5249.
35 Derkach V, Barria A, and Soderling TR (1999) Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 96:3269–3274.
36 Banke TG, Bowie D, Lee HK, Huganir RL, Schousboe A, and Traynelis SF (2000)Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 20:89–102.
37 Lee HK, Barbarosie M, Kameyama K, Bear MF, and Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bi-directional synaptic plasticity. Nature (Lond) 405:955–959.
38 Beattie EC, Carroll RC, Yu X, Morishita W, Yasuda H, von Zastrow M, and Malenka RC (2000) Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci 3:1291–1300.
39 Ehlers MD (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28:511–525.
40 Huang Y-Y and Kandel ER (1998) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21:169–178.
41 Weisskopf MG, Bauer EP, and LeDoux JE (1999) L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci 19:10512–10519.
42 Morgan CA, Grillon C, Southwick SM, Davis M, and Charney DS (1996) Aggregated acoustic startle reflex in Gulf War veterans with posttraumatic stress disorder. Am J Psychiatry 153:64–68.
43 Pavlov IP (1927) Conditioned Reflex: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford University Press, London.
44 Davis M (2000) The role of the mygdale in conditioned and unconditioned fear and anxiety, in The Amygdala: A Functional Analysis. (Aggleton JP ed) pp 213–287,Oxford University Press Inc., New York.
45 LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184.
46 Campeau S and Davis M (1995) Involvement of subcortical and cortical afferents to the lateral nucleus of the mygdale in fear conditioning measured with auditory and visual conditioned stimuli. J Neurosci 15:2312–2327.
47 McKernan MG and Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature (Lond) 390:607–610.
48 Rogan MT, Staubli UV, and LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature (Lond) 390:604–607.
49 Weiss SRB, Li X, Rosen JB, Li H, Heynen T, and Post RM (1995) Quenching:inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport 4:2171–2176.
50 Aroniadou-Anderjaska V, Post RM, Rogawski MA, and Li H (2001) Input-specific LTP and depotentiation in the basolateral amygdala. Neuroreport 12:635–640.
51 Marks I (1987) Fear, phobias, and Ritual: panic, Anxiety and Their Disorder. New York: Oxford University press.
52 Ohman A (1992) Fear and anxiety as emotional phenomena: Clinical, phenomenological, evolutionary perspective, and information-processing mechanism. In Lewis M, Haviland JM, editor. Handbook of the Emotions. New York: Wiley-Liss, pp 167-190.
53 Manderscheid RW, Sonnenschein MA (1994) Mental Health,United State 1994. Rockville, MD: U.S. Department of public Health and Human Services.
54 LeDoux JE (1996) The Emotional Brain. New York: Simon and Schuster.
55 LeDoux JE (1998) Fear and the Brain: Where Have We Been, and Where Are We Going? Biological Psychiatry 44:1229-1238.
56 Rogan , MT. Sta, UV and LeDoux JE . Fear conditioning induces associative long-term potentiation in the amygdala (1997) Nature (Lond) 390:604-607.
57 Pin, J.P. and Duvoisin, R. (1995). The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1-26.
58 Anwyl, R. (1999). Metabotropic glutamate receptors: elecrophysiological properties and role in plasticity. Brain Res Rev 29:83-120.
59 Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597-603.
60 Pin, J.P. and Duvoisin, R. (1995). The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1-26.
61 Pin, J.P. and Duvoisin, R. (1995). The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1-26.
62 Neki, A., Ohishi, H., Kaneko, T., Shigemoto, R., Nakanishi, S. and Mizuno, N. (1996). Pre- and postsynaptic localization of a metabotropic glutamate receptor, mGluR2, in the rat brain: an immunohistochemical study with a monoclonal antibody. Neurosci Lett 202:197-200.
63 Schaffhauser, H., Richards, J.G., Cartimell, J., Chaboz, S., Kemp, J.A., Klingelschmidt, A., Messer, J., Stadler, H., Woltering, T. and Mutel, V. (1998). In vitro binding characteristics of a new selective group II metabotropic glutamate receptor radioligand, [3H]LY354740, in rat brain. Mol Pharmacol 53:228-233.
64 Battaglia, G.., Monn, J.A. and Schoepp, D.D. (1997). In-vivo inhibition of veratradine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci Lett 229:161-164.
65 Helton, D.R., Tizzano, J.P., Monn, J.A., Schoepp, D.D. and Kallman, M.J. (1998). Anxiolytic and side-effect profile of LY354740: a potent highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 284:651-660.
66 Helton, D.R., Tizzano, J.P., Monn, J.A., Schoepp, D.D. and Kallman, M.J. (1997). LY354740: a metabotropic glutamate agonist which ameliorates symptoms of nicotine withdrawal in rats. Neuropharmacology 36:1511-1516.
67 Shekhar, A. and Keim, S.R. (2000). LY354740, a potent group II metabotropic glutamate receptor agonist prevents lactate-induced panic-like response in panic-prone rats. Neuropharmacology 39: 1139-1146.
68 Yokoi, M., Kobayashi, K., Manabe, T., Takahashi, T., Sakaguchi, I., Katsuura, G., Shigemoto, R., Ohishi, H., Nomura, S., Nakamura, K. and Nakao, K. (1996). Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 273:645-647.
69 Li, H., Weiss, S.R.B., Chuang, D.M., Post, R.M. and Rogawski, M.A. (1998). Bidirectional synaptic plasticity in the rat basolateral amygdala: characterization of an activity-dependent switch sensitive to the presynaptic metabotropic glutamate receptor antagonist 2S--ethylglutamic acid. J Neurosci 18:1662-1670.
70 Lin, H.C., Wang, S.J., Luo, M.Z. and Gean, P.W. (2000). Activation of group II metabotropic glutamate receptors induces long-term depression of synaptic transmission in the rat amygdala. J Neurosci 20: 9017-9024.
71 Jane, D.E., Thomas, N.K., Tse, H.W. and Watkins, J.C. (1996). Potent antagonists at the L-AP4- and (1S,3S)-ACPD-sensitive presynaptic metabotropic glutamate receptors in the neonatal rat spinal cord. Neuropharmacology 35:1029-1035.
72 Li, H., Weiss, S.R.B., Chuang, D.M., Post, R.M. and Rogawski, M.A. (1998). Bidirectional synaptic plasticity in the rat basolateral amygdala: characterization of an activity-dependent switch sensitive to the presynaptic metabotropic glutamate receptor antagonist 2S--ethylglutamic acid. J Neurosci 18:1662-1670.
73 Weisskopf, M.G., Bauer, E.P. and LeDoux, J.E. (1999). L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci 19:10512-10519.
74 Bauer, E.P., Schafe, G.E. and LeDoux, J.E.(2002). NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 22:5239-5249.
75 Capogna, M., Gahwiler, B.H. and Thompson, S.M.(1996). Presynaptic inhibition of calcium-dependent and –independent release elicited with ionomycin, gadolinium and alpha-latrotoxin in the hippocampus. J Neurophysiol 75:2017-2028.
76 Morgan, C.A., Grillon, C., Southwick, S.M., Davis, M. and Charney, D.S. (1996) Aggregated acoustic startle reflex in Gulf War veterans with posttraumatic stress disorder. Am J Psychiat 153:64-68.
77 McKernan, M.G. and Shinnick-Gallagher, P. (1997). Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390: 607-610.
78 Rogan, M.T., Staubli, U.V. and LeDoux, J.E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604-607.
79 Walker, D.L., Ressler, K.J., Lu, K.T. and Davis, M. (2002).Facilitationof comditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 22: 2343-2351.
80 Ishida, M., Saitoh, T., Shimamoto, K., Ohfune, Y. and Shinozaki, H. (1993). A novel metabotropic glutamate receptor agonist: marked depression of monosynaptic excitation in the newborn rat isolated spinal cord. Br J Pharmacol. 109:1169-1177.
81 Wilsch, V.W., Pidoplichko, V.I., Opitz, T., Shinozaki, H. and Reymann K.G. (1994). Metabotropic glutamate receptor agonist DCG-IV as NMDA receptor agonist in immature rat hippocampal neurons. Eur J Pharmacol 262:287-291.
82 Lin, C.H., Lee, C.C. and Gean, P.W. 2003. Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol 63:44-52.
83 Heinbockel, T. and Pape, H.C.( 2000). Input-specific long-term depression in the lateral amygdala evoked by theta frequency stimulation. J Neurosci 20 RC 88:1-5.
84 Lin, H.C., Wang, S.J., Luo, M.Z. and Gean, P.W. (2000). Activation of group II metabotropic glutamate receptors induces long-term depression of synaptic transmission in the rat amygdala. J Neurosci 20: 9017-9024.
85 Tzounopoulos, T., Janz, R., Sudhof, T.C., Nicoll, R.A. and Malenka, R.C. (1998). A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 21:837-845.
86 Kobayashi, K., Manabe, T. and Takahashi, T.(1999). Calcium-dependent mechanisms involved in presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Eur J Neurosci 11:1633-1638.
87 Lin, H.C., Wang, S.J., Luo, M.Z. and Gean, P.W. (2000). Activation of group II metabotropic glutamate receptors induces long-term depression of synaptic transmission in the rat amygdala. J Neurosci 20: 9017-9024.
88 Robbe, D., Alonso, G., Chaumont, S., Bockaert, J. and Manzoni, O.J. (2002). Role of P/Q Ca++ channels in metabotropic glutamate receptor 2/3-dependent presynaptic long-term depression at nucleus accumbens synapses. J Neurosci 22:4346-4356.
89 Neki, A., Ohishi, H., Kaneko, T., Shigemoto, R., Nakanishi, S. and Mizuno, N. (1996). Pre- and postsynaptic localization of a metabotropic glutamate receptor, mGluR2, in the rat brain: an immunohistochemical study with a monoclonal antibody. Neurosci Lett 202:197-200.
90 Huang, L., Killbride, J., Rowan, M.J. and Anwyl, R. (1999). Activation of mGluR II induces LTD via activation of protein kinase A and protein kinase C in the dentate gyrus of the hippocampus in vitro. Neuropharmacology 38:73-83.
91 Cho, K., Kemp, N., Noel, J., Aggleton, J.P., Brown, M.W. and Bashir, Z.I.(2000). A new form of long-term depression in the perirhinal cortex. Nature Neurosci 3:150-156.
92 Otani, S., Daniel, H., Takita, M., and Crepel, F. (2002). Long-term depression induced by postsynaptic group II metabotropic glutamate receptors linked to phospholipase C and intracellular calcium rises in rat prefrontal cortex. J Neurosci 22:3434-3444.
93 Heinbockel, T. and Pape, H.C. (2000). Input-specific long-term depression in the lateral mygdale evoked by theta frequency stimulation. J Neurosci 20 RC 88:1-5.
94 Miserendino, M.J., Sananes, C.B., Melia K.R. and Davis M. (1990). Blocking of acquisition but not expression on conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature (Lond) 345:716-718.
95 Maren, S. (1999). Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci 22: 561-567.
96 Weisskopf, M.G., Bauer, E.P. and LeDoux, J.E. (1999). L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci 19:10512-10519.
97 Lin, C.H., Yeh, H.W., Lin, C.H., Lu, K.T., Leu, T.H., Chang, W.C. and Gean, P.W. (2001). A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31: 841-851.
98 Schafe, G.E., Nader, K., Blair, H.T. and LeDoux, J.E. (2001). Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci 24:540-546.
99 Soderling, T. and Derkach, V.A. (2000). Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23:75-80.
100 Impey, S., Smith, D.M., Obrietan, K., Donahue, R., Wade, C. and Storm, D.R. (1998). Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1:595-601.
101 Schafe, G.E., Atkins, C.M., Swank, M.W., Bauer, E.P., Sweatt, J.D. and LeDoux, J.E. (2000). Activation of ERK/MAPK kinase in the amygdala is required for memory consolidation of Pavlovian fear conditioning. J Neurosci 20:8177-8187.
102 Josselyn, S.A., Shi, C., Carlezon Jr., W.A., Neve, R.L., Nestler, E.J. and Davis, M. (2001). Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 21:2404-2
103 Neugebauer, V., Keele, N.B. and Shinnick-Gallagher, P. (1997). Epileptogenesis in vivo enhances the sensitivity of inhibitory presynaptic metabotropic glutamate receptors in basolateral amygdala neurons in vitro. J Neurosci 17:983-995.
104 Keele, N.B., Neugebauer, V. and Shinnick-Gallagher, P. (1999). Differential effects of metabotropic glutamate receptor antagonists on bursting activity in the amygdala. J Neurophysiol 81:2056-2065.
105 Ameisen JC (2002) On the origin, evolution, and nature of programmed cell death: a timeline of our billion years. Cell Death Differ 9:367-393.
106 Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407:796-801
107 Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetic of programmed cell death in C. elegans: pase, present and future. Trends Genet 14:410-416.
108.Hetts SW (1998) To die or not todie: an overview of apoptosis an its role in disease. J Am MedAssoc 279:300-307.
109 Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456-1462.
110 Zhang Y, Herman B (2002) Ageing and apoptosis. Mech Ageing Dev 123:245-260.
111 Bredesen DE (1996) Genetic control of neural cell apoptosis. Perspect Dev Neurobiol 3:101-109.
112 Sastry PS, Rao KS (2000) Apoptosis and the nervous system. J Neurochem 74:1-20.
113 Troy CM, Salvesen GS (2002) Casepase on the brain. J Neurosci Res 69:145-150.
114 Eldadah BA, Faden AI (2000) Caspase pathway, neuronal apoptosis, and CNS injury. J Neurotrauma 17:811-829.
115 Kerr JF, Wyllie A H, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257.
116 Walker NI, Harmon BV, Gobe GC, Kerr JF (1988) Patterns of cell death. Methods Achiev. Exp Pathol 13:18-54.
117 Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181:195-213.
118 Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 18:238-51
119 Wang JY, Shum AY, Ho YJ, Wang JY (2003) Oxidative neurotoxicity in rat cerebral cortex neurons: synergistic effects of H2O2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3. Neurosci Res 72:508-19.
120. Li Y, Kyoko O, Junko S, Chiyoko I (2004) Calcineurin-mediated BAD Ser155 dephosphrylation in ammonia-induced apoptosis of cultured rat hippocampal neurons. Neurosci lett 357:73-75.
121 Sonia M, Marcors M, Angel H (2002) Antioxidants inhibit the Human cortical neuron apoptosis induced by hydrogen peroxide, tumor necrosis factor-alpha, dopamine and beta-amyloid peptide 1-42. Free radical Res 36:1179-1184.
122 Catherine C, Wilson SC, Krishna S (2000) p38 Mitigen-activated protein kinase pathway protects adult rat ventricular myocytes aganst b-adrenergic receptor-stimulated apoptosis. J Biol Chem 275: 19395-19400.
123 Okamoto SI, Krainc D, Sherman K and Lipton SA (2000) Antiapoptotic role of the P38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation.Proc Natl Acad Sci USA 97:7561-7566
124 Jai SN, Hyo JK, Eun YK, Seonghyang S, Young KC, Seung UK, Byoung JG (2000) Haloperidol-induced neuronal apoptosis: role of p38 and c-Jun-NH2-Terminal protein kinase. J Neurochem. 75: 2327-2334
125 Shou Y, Li L, Prabhakaran K, Borowitz L, Isom GE (2003) p38 Mitogen-activated protein kinase regulates bax translocation in cyanide-induced apoptosis. Toxicol Sci 75:99-107
126 Hashimoto S, Gon Y, Matsumoto K, Takeshita I, Asai Y, Machino T, Horie T (2000) Regulation by intracellular glutathione of TNF-α-induced p38 MAP kinase activation and RANTES production by human pulmonary vascular endothelial cell. Allergy 55:463-469
127 Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J (1994) Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of hsp27. Cell 78:1039-49
128 Rouse J, Cohen P, Trigon S, Morange M, Alonso LA, Zamanillo D, Hunt T, Nebreda AR (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027-1037
129 Meister A (1988) Glutathione metabolism and its selective modification.J Biol Chem 263:17205-17208.
130 Ferrari G, Yan CYI, Greene LA (1995) N-Acetylcysteine (D- and
L-stereoisomers) prevents apoptotic death of neuronal cells. Neuroscience 15:2857–2866.
131 Zhu S, Stavrovskaya IG, Drozda M (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417:74-78
132 Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J.(1999) A tetracycline derivative against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496-13500.
133 Sanchez Mejia RO, Ona VO, Li M, Friedlander RM.(2001) Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage and neurological dysfunction. Neurosurgery 48:1393-1399
134 Chen M, Ona VO, Li M.(2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntinton disease. Nat Med 6:797-801
135 Du Y, Ma Z, Lin S.(2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson`s disease. Proc. Natl Acad Sci USA 98:14669-14674
136 Xin W, Shan Z, Martin D, Wenhua Z, Irina GS, Elena C, Robert JF, Bruce SK, and Robert MF.(2003) Minocycline inhibits caspase-independent and –dependent mitochondria cell death pathways in models of Huntinton`s disease. Proc Natl Acad Sci USA 100:10483-10487
137 Guy SS, Vishva MD.(1997) Caspases: Intracellular signaling by proteolysis. Cell 91:443-446
138 Nancy AT, Yuri L. (1998) Caspases : Enemies Within. Science 281:1312-1316
139 Lokshin RA, Zakeri Z. (2002) Caspase-independent cell death. Curr Opin Cell Biol 14:727-733
140 Lorenzo HK, Susin SA. (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett. 557:14-20
141 Herbert MG, Ke YC, Noriko KG, Alejandro AR, Ai LZ, Erick JM, Lindsey G. (2001) Oxidative stress mediates neuronal DNA damage and apoptosis in response to cytosine arabinoside. J Neurochem 78:265-275
142 Chao YIY, Lioyd AG (1998) Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway. J Neurosci 18:4042-4049
143 Abate C, patel L, Rauscher III FJ, Curran T.(1990) Redox regulation of fos and jun DNA-binding activity in vitro. Science 249:1157-1161
144 Meyer M, Schreck R, Baeuerle PA.(1993) H2O2 and antioxidants have opposite effects on activation of NF-kB and AP-1 in intact cell: AP-1 as secondary antioxidant-responsive factor. EMBO J 12:2005-2015
145 Kohsuke T, Hidenori I.(2002) Neuronal p38 MAPK signaling : an emerging regulator of cell fate and function in the nervous system. Genes to cells 7:1099-1111.
146 Sean PC, Andre F, Jason GM, Steven MC, Francesco C, Seong WY, Ted MD, Valina LD, David SP, Guido K, Ruth SS. (2002)Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507-517
147 Jiz YW, Andrew YCS, Yi JH, Jia YW.(2003) Oxidative neurotoxicity in rat cerebral cortex neurons:synergistic effects of H2O2 and NO on apoptosis involving activation of p38 MAPK and caspase-3. J Neurosci Res 72:508-519
148 Wang SJ, Sihra TS, Gean PW (2001) Lamotrigine inhibition of glutamate release From isolated cerebrocortical nerve terminals(synaptosomes) by suppression of Voltage-activated calcium channel activity. NeuroReport 12:2255-2258.
149 Cassella JV, Davis M (1986) The design and calibration of a startle measurement System. Physiology and Behavior 36:377-383.
150 Pavolov IP (1927) Conditioned reflex: an investigation of the physiological activity of the cerebral cortex.( Oxford university press, London).
151 Huang CC, Liang YC,Hsu KS (2001) Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. J Biol Chem 276:48108-48117.
152 Manzoni OJ, ManabeT, Nicoll RA (1994) Release of adenosine by activation of NMDA receptor in the hippocampus. Science 265: 2098-2101.
153 Jouvenceau A, Billard JM, Haditsch U, Mansuy IM, Dutar P (2003) Different phosphatase-dependent mechanisms mediate long-term depression and depotentiation of long-term potentiation in mouse hippocampal CA1 area. Eur J Neurosci 18: 1279-1285.
154 Huang CC, Chen YL, Liang YC, Hsu KS (2002) Role for cAMP and protein phosphatase in the presynaptic expression of mouse hippocampal mossy fiber depotentiation. J Physiol 543: 767-778.
155 Tzounopoulos T, Janz R, Sudhof TC, Nicoll RA, Malenka RC (1998) A role for cAMP in Long-Term Depression at hippocampal mossy fiber synapses. Neuron 21:837-845.
156 Cooper DMF, Mons N, Karpen JW (1995) Adenylyl cyclases and the interaction between calcium and cAMP signaling. Nature 374:421-424.
157 Kakkar R, Raju RV, Sharma RK (1999) Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1).Cell Mol Life Sci 55:1164-1186.
158 Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenber ME(1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326-1331.
159 English JD, Sweatt JD(1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long-term potentiation. J Biol Chem 272:19103-19106.
160 Rush AM, Wu J, Rowan MJ, Anwyal R(2002) Group I metabotropic glutamate receptor(mGluR)-dependent long-term depression mediated via p38 mitogen-activated protein kinase is inhibited by previous high-frequncy stimulation and activation of mGluRs and protein kinase C in the rat dentate gyrus. J Neurosci 22:6121-6128.
161 Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785-790.
162 Morimoto N, Shimazawa M , Yamashima T,Nagai H, Hara H (2005) Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage. Brain Res 1044:8-15.
163 Jana A, Pahan K (2004) Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. J Biol Chem 279:51451-51459.
164 Masada Y, Inoue T, Hashimoto K, Fujioka M, Shiraki (1973) Studies on the pungent principles of ginger (Zingiber officinale Roscoe) by GC-M. Yakugaku Zasshi 93:318-21
165 Lee E, Surh YJ (1998) Induction of apoptosis in HL-60 cells by pungent vanilloids [ 6]-gingerol and [ 6]-paradol. Cancer Lett 134:
163-8
166 Bode AM, Ma WY, Surh YJ, Dong Z (2001) Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [ 6]-gingerol. Cancer Res 61:850-3