| 研究生: |
張馨文 Chang, Hsin-Wen |
|---|---|
| 論文名稱: |
石斑魚肌肉倍增基因之選殖與應用 Cloning and application of yostaitn gene from grouper (Epinephelus spp.) |
| 指導教授: |
陳宗嶽
Chen, Tzong-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 肌肉倍增基因 |
| 外文關鍵詞: | myostatin |
| 相關次數: | 點閱:55 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石斑魚(Epinephelus spp.)是台灣主要海水養殖魚類之一,如果可以藉由改造基因促使石斑魚在較短的養殖時間內能長成與傳統養殖型態一樣或更大的結果,就可以降低漁民的養殖成本。抑制肌肉倍增基因 (myostatin) 在牛及老鼠的研究結果,已知能促進肌肉增加。肌肉倍增基因的序列有1131核苷酸,相當於367氨基酸,含有三個重要的基本單元分別為: N端的分泌訊息序列、RXXR 蛋白質水解進行區域及 C 端的半胱胺酸區。而在石斑魚中也有肌肉倍增基因被發現,其氨基酸序列與其它物種的相似度高達70 % 以上,尤其是在C端半胱胺酸區,這部分被認為是肌肉倍增基因的成熟生理活性區域,與其它物種的相似度更高。 Wittemore 等人 (2003) 發現藉由單株抗體來認識並接合在肌肉倍增基因序列中位於C端的15 氨基酸所組成的抗原區,能促進老鼠的肌肉增加。然而,若只利用這個小片段的胜肽來當作抗原,將不易引起免疫反應, 因此利用TR-PCR的技術將這段胜肽之核苷酸序列重複放大並銜接綠濃桿菌外毒素A的domain Ia核苷酸,以此核苷酸序列所表現的嵌合胜肽鏈可提升免疫反應。從石斑魚的實驗顯示出,施打含有六個重複抗原的嵌合抗原的石斑魚,其體重增加量較其它三組為多。因此,抑制肌肉倍增基因,可以增加石斑魚的重量,所以在魚類的肌肉倍增基因可能與哺乳動物的肌肉倍增基因有同樣的功能,因此可以利用抑制肌肉倍增基因的方法,來提高魚的重量,增加生產量。
Grouper (Epinephelus spp.) is one of the major high economic aquaculture in Taiwan. Thus, if a gene product can be used of to short the breeding time of groupers and moreover can generate the equal or better quality of groupers than using the traditional breeding, then it will decrease their cost and increase the rate of reproduction. Myostatin is one of genes that can regulate skeletal muscle development and was found in groupers. The full length of myostatin cDNA found in mice and cattle, can cause increase of muscle mass by blocking or mutating this gene. Myostatin cDNA contains 1131 bps nucleotides (i.e. 367 amino acid residues) and myostatin is consist of three critical motifs which are N-terminal signal sequence of secretion、RXXR proteolytic processing site and C-terminal cysteine-rich region. The amino acid sequence of myostatin shows at least 70% conservation among organisms, especially in C-terminal cysteine-rich region which is identified as mature biological active region. Wittemore et al. (2003) developed a neutralizing monoclonal antibody to recognize the epitope of myostatin in mice, which is consisting of 15 amino acids within C-terminal portion of this protein and they found to block this epitope can increase double muscle in mice. But using this small peptide as an antigen may elicit immune response poorly, in order to increase immune response, we construct a gene contain a tandem repeat of this peptide by using TR-PCR technique and conjugated with domain I of pseudomonas exotoxin A. Comparing the muscle weight of groupers using six-copy myostatin epitope antigen with that groupers using one-copy myostatin epitope antigen and using the other two control antigens, PE(Ia) and PBS, we have found that the groupers immunized with the six-copy myostatin antigen has shown more muscle weight increase than others. Thus, inhibiting Myostatin in groupers can cause more muscle weight increase, so it can determine that the function of Myostatin in grouper might be the same function as in mammalian. Moreover, we can use this strategy like inhibiting Myostatin to cause more muscle weight increase and thus decrease fishermen’s cost and increase the rate of reproduction.
Amthor H, Huang R, Mckinnell I, Christ B, Kambadur R, Sharma M, Patel K. The regulation and action of Myostatin as a negative regulator of muscle development during avian embryogenesis. Dev. Biol. 2002; 251: 241-57.
Arnold H, Della-Fera M, Baile CA. Review of myostatin history, physiology and applications. Int Arch Biosci. 2001: 1014-1022.
Bass J, Oldham J, Sharma M, Kambadur R. Growth factors controlling muscle development. Domestic Animal Endocrinology 1999; 17: 191-7.
Chaudhary VD, Xu YH, FitzGerald D, Adhya S, Pastan I. Role of domain II of Pseudomonas exotoxin in the secretion of protein into the periplasm and medium of Escherichia coli. PROC. NATL. ACAD. SCI. U.S.A. 1988; 85; 2939-43.
Elzaim HS, Chopra AK, Peterson JW, Goodheart R, Heggers JP. Generation of neutralizing antipeptide antibodies to the enzymatic domain of Pseudomonas aeruginosa Exotoxin A. Infect. Immun. 1998; 66: 2170-9.
Frohman MA, Dush MK, Martin GR. Rapid production of full-length cDNA from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. PROC. NATL. ACAD. SCI. U.S.A. 1988; 85: 8998- 9002.
Hsu CT, Ting CY, Ting CJ, Chen TY, Lin C, Ostbye TK, Galloway TF, Nielse C, Gabestad I, Bardal T, Andersen O. Eur. J. Biochem. 2001; 268: 5249-57.
Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldbeg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J. Climate change, human impacts and the resilience of coral reefs. Science 2003; 301: 929-33.
Hussain NA, Higuchi M. Larval rearing and development of the brown-spotted grouper, Epinephelus tauvina (Forsskal). Aquaculture 1980; 19: 339-350.
Hwang J, Fitzgerald DJP, Adhya S, Pastan I. Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. Coli. Cell 1987; 48: 129-36.
Gray GL, Smith DH, Baldridge JS, Harkins RN, Vasil ML, Chan EY, Heyneker HL. Cloning, nucleotide sequence and expression in Escherichia coli of the exotoxin A structural gene of Pseudomonas aeruginosa. PROC. NATL. ACAD. SCI. U.S.A. 1984; 81: 2645-49.
Grobet L, Martin L-J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 1997; 17: 71-4.
Iglewski BH, Kabat D. NaD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. PROC. NATL. ACAD. SCI. U.S.A. 1975; 72: 2284-8.
Jiang MS, Liang LF, Wang S, Ratovitski T, Holmstrom J, Barker C, Stotish R. Characterization and identification of the inhibitory domain of GDF-8 propeptide. BBRC 2004; 315: 525-31.
Karim L. Coppieters W. Grobet L. Georges M. Valentini A. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Animal Genetics 2000; 31: 396-9.
Kimberly S D-M, Price BM, Baker NR, Galloway DR. Analysis of immunization with DnA encoding Pseudomonas aeruginosa exotoxin A. FEMS immunology and medical microbiology 2000; 27: 147-54.
Kochabas AM, Kucuktas H, Dunham RA, Liu Z. Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochimica et Biophysica Acta 2002; 1575: 99-107.
Langley b, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R. Myostatin inhibits myoblast differentiation by downregulating MyoD expression. J.Biol. Chem. 2002; 277: 49831- 40.
Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. PROC. NATL. ACAD. SCI. U.S.A. 2001; 98: 9306-11.
Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA. Myostatin knockout in mice increases myogenesis and deceases adipogenesis. Biochem. Biophys. Res. Commun. 2002; 291: 701-6.
Liu PV. Exotoxins of Pseudomonas aeruginosa I. Factors that influence the production of exotoxin A. J.Infect. Dis. 1973; 128: 506-13.
Liu PV. Extracellular toxins of Pseudomonas aeruginosa II. Concentration, purification, and characterization of exotoxin A. J. Infect. Dis. 1974; 128: 514-9.
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387: 83-90.
Ostbye TK, Galloway TF, Nielsen C, Gabestad I, Bardal T, Andersen O. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur. J. Biochem. 2001; 268: 5149-57.
Piek E, Heldin C-H, Dijke PT. Specificity, diversity and regulation in TGF- superfamily signaling. FASEB 1999; 13: 2105-24.
Rios R, Carneiro, Arce VM, Devesa J. Myostatn regulates cell survival during C2C12 myogenesis. Biochem. Biophys. Res. Commun. 2001; 280: 561-6.
Roberts SB, Goetz FW. Myostatin protein and RNA transcript levels in adult and developing brook trout. Molecular and cellular Endocrinology 2003; 210: 9-20.
Rodgers BD, Weber GM. Sequence conservation among fish myostatin orthologues and the characterization of two additional cDNA clones from Morone saxatilis and Morone Americana. Comparative Biochem. And Phys. Part B 2001; 129: 597-603.
Thomas M, Langley B, Berry C. Myostaitn, a negative regulator of muscle growth, functions by inhibiting myoblast prolliferaiton. J. Biol. Chem. 2000; 275: 40235-43.
Vianello S, Brazzoduro L, Dalla Valle L, Belvedere P, Colombo L. Myostaitn expression during development and chronic stress in zebrafish (Danio rerio). J. Endocrinology 2003; 176: 47-59.
Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, Maylor R, O’Hara D, Pearson A, Quazi A, Ryerson S, Tan XY, Tomkinson KN, Veldman GM, Widom A, Wright JF, Wudyka S, Zhao L, Wolfman NM. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 2003; 300: 965-71.
Wiener P, Smith JA, Lewis AM, Woolliams JA, Wiliams JL. Muscle-related traits in cattle: the role of the myostatin gene in the South Devon breed. Genet Sel. Evol. 2002; 34: 221-32.
Xu C, Wu G, Zohar Y, Du S-J. Analysis of myostatin gene structure, expression and function in zebrafsh. J. Exp. Biol. 2003; 206: 4067-79.