簡易檢索 / 詳目顯示

研究生: 劉諺憶
Liou, Yan-Yi
論文名稱: 應用反覆剪力試驗探討具節理面之不同尺寸軟弱砂岩試體的殘餘剪力強度
Applying Cyclic Shear Test on Evaluating the Joint Residual Shear Strength of Soft Sandstone under Different Size Specimen
指導教授: 李德河
Lee, Der-Her
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 222
中文關鍵詞: 殘餘剪力強度反覆剪力試驗節理面JRC尺寸大小GIS地理資訊系統
外文關鍵詞: Residual shear strength, Cyclic shear test, Joint surface, JRC, Size of specimen, Geographic Information System (GIS)
相關次數: 點閱:171下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般在邊坡穩定分析中,考量滑動破壞面的剪力抵抗時,常將破壞面上材料的剪力強度以殘餘剪力強度為之,因此,探討坡地材料的殘餘剪力強度是相當重要的。在實驗室內求取邊坡材料的殘餘剪力強度一般多以傳統直接剪力試驗來求取,但傳統直接剪力試驗在剪動過程中,受剪面積不斷變小且剪動位移量受到試體尺寸的限制,而得不到材料真正的殘餘強度。
    Bishop et al. (1971)開發使用環形剪力儀,應用於原狀與重模黏土的剪力試驗改善傳統直接剪力的缺點,使試驗中剪動面積維持不變並可進行大剪動位移的試驗,環形剪力儀雖然可改善傳統直接剪力試驗的兩大缺點,但其在儀器操作上較為困難、儀器設備複雜、價格高昂,一般實驗室較少見。
    為了免除環形剪力儀的昂貴與複雜又能改善傳統直剪試驗的缺失,本文嘗試使用反覆剪力試驗,來探討大型岩盤邊坡地滑的殘餘剪力強度,主要以草嶺地滑為對象,研究草嶺地滑之卓蘭層砂岩的殘餘剪力強度,以不同尺寸大小具人工節理面岩塊試體檢討剪斷面積、剪動位移量對於殘餘剪力強度的影響。並且利用雷射剖面儀來掃描剪力試驗前、後之節理剖面試體,計算其節理剖面之JRC值,以了解在剪力試驗前、後之卓蘭層砂岩節理剖面粗糙變化情況。此外,透過Sufer軟體將節理剖面繪製立體圖,展現節理剖面的情況,再使用ArcGIS地理資訊系統分析節理剖面的坡高、坡度、坡向資料,可知各剖面之各項資料。

    本研究結果如下:
    1. 各尺寸節理剖面岩塊在殘餘狀態下,摩擦角與凝聚力值。
    尺寸 正向應力 累積剪位移量 殘餘摩擦角 凝聚力
    (MPa) (mm) (°) (MPa)
    A(10cm×10cm×10cm) 0.5、1、2、4 200 34.8 0.100
    B(20cm×10cm×10cm) 0.5、1、2、4 200 39.1 0.233
    C(30cm×10cm×10cm) 0.5、1、2 240 31.8 0.473
    A(10cm×10cm×10cm) 0.4、0.6、0.8 200 39.7 0
    D(20cm×20cm×10cm) 0.4、0.6、0.8 200 42.8 0
    由於人工節理剖面的異質性,剪力強度受剖面起伏影響大,本研究結果之殘餘摩擦角並沒有隨著試體尺寸變大,而有明顯的增加或減少。
    2. 具節理剖面試體,當正向應力越大時,需要較大的剪位移量,剪力強度才會進入殘餘狀態;在正向應力0.5MPa、1MPa下,試體呈現剪脹行為,剪力強度來源為節理剖面沿剖面爬升之摩擦力;在正向應力2MPa與4MPa下,試體呈現剪縮的行為,剪動過程試體節理剖面不斷的被剪斷、壓碎,較大的正向應力剪縮量越大,即正向應力越大,節理剖面被剪斷、壓碎行為越劇烈。
    3. 具節理面岩塊之JRC值在剪力試驗前後變化情況,在相同尺寸下,正向力越大,JRC減少越劇烈;在相同正向應力之下,尺寸越大,JRC減少越劇烈。
    4. 節理岩塊剖面之JRC值與試體長度有關,尺寸A與尺寸B計算JRC值時,試體長度在10cm左右時,JRC有收斂的情況;尺寸C的JRC與試體長度之關係,試體長度則是在15cm左右時,JRC也有收斂的情況。
    5. Barton之經驗公式預測剪應力值,當JRC值範圍在18以上,節理剖面較粗糙時,預測誤差大;當正向應力0.5MPa下,預測誤差大,隨著正向應力增加,誤差值減少。
    6. 卓蘭層砂岩在尺寸A下,剪力試驗之剪動過程中,節理面爬升與節理面剪斷的正向應力門檻值,經過實驗迴歸後計算為1.386MPa。
    7. 透過ArcGIS地理資訊系統,可以將3D節理剖面資料,進行坡高、坡度、坡向進行資料分析,可以藉此了解各尺寸試體剖面起伏情況。各節理剖面的坡向分析中可知,剖面在各方向的比例並不相同,顯示剖面起伏的各方向比例不同。
    8. 從ArcGIS地理資訊系統的坡向、坡度資料分析,本試驗剖開岩塊的方法,其尺寸大小不同時,節理剖面的起伏情況並不相同,節理剖面試體的異質性,剪力強度並無規則的尺寸效應。

    Generally in the stability of slope analysis,when consideration of slideing failure surface shear force resistance is often using the residual shear strenght for the failure surface on the material shear strenght. Therefore, the discussion on slopes material's residual shear strenght is quite important. To find the slope on the material shear strenght,it is often using the tradition direct shear test in the laboratory. But the tradition direct shear test in the shaering process, there is changeing small in the area of cross section ofthe shear plane and to limit the shear displacement by the specimen size, can't obtain true residual strength.
    Bishop et al. (1971) development use ring-shear apparatus, applies in the original condition and the remolded clay shearing test improvement tradition direct shear shortcoming, there is no change in the area of cross section of the shear plane and it can do big shear displacement test. Although ring shear apparatus can improvement tradition direct shear two shortcoming, it is more difficult in the instrument operation, the instrumentation equipment to be complex, the price is soaring, generally the laboratory is rare.
    In order to avoid the ring-shear apparatus expensive and complex can improve the tradition direct shear test the shortcoming,this article attempts the cyclic shear test to discuss the large-scale siding slope's residual shear strenght. Mainly take the Tsaoling landslide as the object, researching into Tsaoling landslide's Chaolan formation sandstones of residual shear strenght.It has artificial jointed rock by different size specimen to discuss the area of cross section of the shear plane and shear displacement which regarding residual shear strenght influence. And scans the shearing test before and after jointing using the laser profiler to jointed specimen, calculating JRC of value its jointed specimen,which understand in the shearing test before and after Chaolan formation sandstones of jointed specimen rough change situation. In addition, by Sufer software jointing section plane plan block diagram, development jointing section plane situation, and using the geography information system analysis jointing section plane's height, slope and aspect, may know different section planes each item of data.
    This research are as follows:
    1. Different sizes jointed section plane rock under residual condition, angle of friction and cohesive of value.
    size normal stress Shear displacement residual angle of friction cohesive
    (MPa) (mm) (°) (MPa)
    A(10cm×10cm×10cm) 0.5、1、2、4 200 34.8 0.100
    B(20cm×10cm×10cm) 0.5、1、2、4 200 39.1 0.233
    C(30cm×10cm×10cm) 0.5、1、2 240 31.8 0.473
    A(10cm×10cm×10cm) 0.4、0.6、0.8 200 39.7 0
    D(20cm×20cm×10cm) 0.4、0.6、0.8 200 42.8 0
    Because the non-homogeneous of the artificial joint surfaces of the specimens, the profile fluctuations of the joint surfaces affect the shear strengths of the specimens. Meanwhile, the residual friction angle has no obvious variation as the size of the specimen varies.
    2. Higher the normal stress, higher the shear displacement for the specimen gets into the residual condition. When the normal stress is 0.5MPa and 1MPa, specimens present shear dilation and the shear strength originates from the friction as the specimen moves along the joint profile. When the normal stress is 2MPa and 4MPa, specimens present shear compaction and the joints of the specimen are cut off and broken to pieces. Higher normal stress indicates larger shear compaction and the joints of the specimen are cut off and broken more violent.
    3. After the cyclic shear test, the JRC of the specimen with the same specimen size reduces more violent as the normal stress increases gradually. Meanwhile, under the same normal stress, the JRC of the specimen reduces more violent as the specimen size enlarges gradually.
    4. The length of the specimen would affect the JRC of the specimen. In size A and size B specimens, as the JRC calculation length of the specimen closes to about 10cm, the JRC of the specimen becomes stable. In size C specimens, as the JRC calculation length of the specimen closes to about 15cm, the JRC of the specimen also becomes stable.
    5. This study uses the Barton empirical formula to forecast the shear stress of the joint in the specimen. When the JRC of the specimen is higher than 18, which means the joint surface is rougher, the shear stress prediction error is getting higher. When the normal stress is lower than 0.5Mpa, the shear stress prediction is not stable and the prediction error is huge. However, the shear stress prediction error would reduce as the normal stress increases.
    6. The joint of the specimen would be cut off and leads to the shear stress decreasing as the normal stress is over the normal stress threshold during the shear test process. When the specimen size of the Chaolan formation sandstone is in size A, the normal stress threshold of the Chaolan formation sandstone is 1.386Mpa by applying the regression analysis on the cyclic shear test results.
    7. Through the geographic information system, the height, slope, aspect of the 3D joint surface data can be calculated and may take advantage of understanding the joint surface roughness fluctuation in different specimen sizes. In the slope analysis of the joint surface, the proportion of the slope in each direction is quite different which reveals the slope distribution is dissimilar in different joint surfaces.
    8. According to the slope and aspect analysis of the joint surface acquired by the geographic information system, the splitting rock specimen method utilized in this study would lead to the different joint surface and joint roughness. The non-homogeneous of the joint surfaces in different specimens result in the shear strength of the specimen would not be affected by the scale effect obviously.

    摘 要 I ABSTRACT IV 誌 謝 VIII 目 錄 IX 表 目 錄 XIII 圖 目 錄 XV 符 號 XXIV 第一章 緒論 1 1-1研究動機與目的 1 1-2研究內容與流程 2 第二章 文獻回顧 4 2-1軟岩材料之介紹 4 2-1-1軟岩之介紹 4 2-1-2軟岩之成因與種類 6 2-1-3軟弱岩石力學特性 8 2-1-4卓蘭層砂岩 10 2-2岩體破壞準則 17 2-2-1 Mohr-Coulomb破壞準則 17 2-2-2 Hoek-Brown經驗破壞準則 18 2-2-3 Griffith破壞理論 18 2-3節理面之粗糙度研究 19 2-3-1 Barton and Choubey(1977)模式 19 2-3-2 Tse and Cruden(1979)模式 21 2-3-3國內粗糙度之研究 21 2-4節理岩塊的剪力強度模式 22 2-4-1 Patton(1966)模式 22 2-4-2 Goodman(1969)剪力變形行為模式 24 2-4-3 Ladanyi and Archambault(1970)模式 26 2-4-4 Barton and Chubey(1977)模式 26 2-4-5張文城(1988)模式 27 2-4-6 Kodikara and Johnston(1994)模式 29 2-5岩石節理面剪力強度規模效應相關文獻 30 2-5-1 Bandis等人(1981)之自然岩石節理面剪力強度規模效應 31 2-5-2 Ohnishi and Yoshinaka (1992)規則節理面剪力強度規模效應 32 2-5-3李宗德(1983)之模擬岩石節理面剪力強度規模效應 33 2-5-4藉由電腦輔助製作模擬岩石節理面剪力強度規模效應 34 2-6殘餘剪力強度 36 2-6-1反覆直接剪力試驗 36 2-6-2殘環形剪力儀的發展 38 第三章 試驗試體、儀器與方法介紹 46 3-1試體來源與製作方法 46 3-1-1試體材料取樣地方 46 3-1-2試體製作 47 3-2試驗儀器介紹 50 3-2-1消散耐久性試驗機 50 3-2-2超音波量測設備 50 3-2-3十噸直接剪力試驗機 51 3-2-4雷射剖面儀 53 3-2-5 Surfer軟體 55 3-2-6 MTS載重試驗機 55 3-2-7大型直剪試驗機 56 3-3試驗規劃與步驟 59 3-3-1基本性質試驗 61 3-3-1-1物性試驗 61 3-3-1-2消散耐久性試驗 61 3-3-1-3超音波試驗 62 3-3-2單軸壓縮試驗 63 3-3-3直接剪力試驗 64 3-3-4巴西試驗 64 3-3-5雷射剖面儀掃描節理面的高程資料建立 65 3-3-6砂岩節理面之剪力試驗 66 第四章 試驗結果與分析 72 4-1基本試驗 72 4-1-1物性試驗 72 4-1-2消散耐久性試驗 73 4-1-3超音波試驗 75 4-2單軸壓縮試驗 78 4-3巴西試驗 80 4-4 剪力試驗 81 4-4-1直接剪力試驗 81 4-4-2節理面剪力試驗 86 4-4-2-1節理面剪力試驗結果(試體尺寸長度增加;寬、高固定) 87 4-4-2-2節理面剪力試驗結果(試體尺寸等比例放大) 115 4-5雷射剖面儀掃描 136 4-5-1 JRC的計算 136 4-5-2數位高程 146 4-6 坡面特徵分析 155 4-6-1 坡高之資料 155 4-6-2 坡度之資料 160 4-6-3 坡向之資料 166 4-7 綜合討論 174 4-7-1剪斷面積與殘餘剪力強度 174 4-7-2剪力強度之規模效應與殘餘狀態 176 4-7-3 Barton之經驗公式預測 181 4-7-4 Patton(1966)之規則節理面破壞包絡線 183 4-7-5反覆剪力試驗與環形剪力試驗的比較 184 第五章 結論與建議 190 5-1結論 190 5-2建議 193 參考文獻 194 附錄A 各尺寸剪力試驗前剖面立體圖 199 附錄B剪力試驗前剖面坡高、坡度、坡向圖 209 附錄C反覆剪力試驗與環形剪力試驗誤差表 220 自 述 222

    1. 田坤國,“人工節理面粗糙度量測及其剪力特性之研究”,國立成功大學土木工程研究所碩士論文,1990。
    2. 何春蓀,“台灣地質概論-台灣地質圖說明書”,經濟部中央地質調查所,第二版,台北,台灣,2003。
    3. 吳俊賢,“利用環形剪力試驗儀探討南部軟岩殘餘強度特性”,國立成功大學土木工程研究所碩士論文,2005。
    4. 李宗德,“模擬岩石節理面剪力強度之規模效應”,國立台灣大學土木工程學研究所碩士論文,1983。
    5. 李怡德,“軟弱砂岩弱化研究”,國立台灣大學土木工程研究所碩士論文,1996。
    6. 李正楠,“草嶺崩坍地受震行為初探”,國立台灣大學土木工程學研究所碩士論文,2001。
    7. 杜振成,“影像處理方法運用於岩節理面強度預估之初步研究”,國立成功大學土木工程研究所碩士論文,1999。
    8. 赤井浩一,“General aspects of soft rock”,土基礎,第41期,第1~6頁,日本,1993。
    9. 林培元,“石膏材料規則節理面之剪力強度特性研究”,國立成功大學土木工程研究所碩士論文,1992。
    10. 林宏明,“軟岩在不同環境及應力條件下之力學行為”,國立成功大學土木工程研究所博士論文,2000。
    11. 林靖奡,“節理面粗糙度量測與剪力強度關係之研究”,國立成功大學土木工程研究所碩士論文,2001。
    12. 林欽崇,“反覆直剪試驗下不規則節理面之剪力衰減行為”,國立台灣海洋大學河海工程研究所碩士論文,2006。
    13. 姜禮仙,“岩石材料在主應力軸旋轉下之力學行為之研究”,國立成功大學土木工程研究所碩士論文,1993。
    14. 柯昭宇,“多孔隙軟弱砂岩受振動態力學特性之研究”,國立成功大學土木工程研究所碩士論文,2008。
    15. 洪如江、林美聆、林銘郎、鄭富書,“九二一集集大地震後續短期研究-草嶺大崩山之後續研究”,報告編號:NCREE-00-057,國家地震工程研究中心,台北,台灣,2000。
    16. 張文城,“岩石節理面之粗糙度與剪力強度研究”,國立台灣大學土木工程所博士論文,1988。
    17. 張仲毅,“岩石材料節理面剪力強度之研究”,國立成功大學土木工程研究所碩士論文,1991。
    18. 陳柏穎,“不排水環形剪力試驗探討關廟層砂岩之剪力行為”,國立成功大學土木工程研究所碩士論文,2006。
    19. 彭軼暉,“岩石節理面剪力牆度規模效應中之幾何因素”,國立台灣大學土木工程所博士論文,2001。
    20. 黃燦輝,“軟弱岩石隧道問題研究(Ⅰ) ”,行政院國家科學委員會專題研究計劃成果報告,1996。
    21. 黃文泓,“電腦輔助製造節理剖面之剪力強度規模效應”,國立台灣大學土木工程所博士論文,2000。
    22. 黃國彰,“人工岩石材料之節理面的剪力強度研究”,國立成功大學土木工程研究所碩士論文,2004。
    23. 經濟部中央地質調查所-地質資料整合查詢
    24. 鄒岳展,“岩石節理面幾何變化對剪力強度之影響”,國立台灣大學土木工程所博士論文,2002。
    25. 像片基本圖:9520-|||-067青山坪(2000)、9520-|||-068草嶺(2000)、9520-|||-077坔埔(2000)、9520-|||-19草嶺(1982),行政院農業委員會林務局農林航空測量所,台北,台灣。
    26. 廖正傑,“南部軟岩於環形剪力試驗及力學特性之研究”,國立成功大學土木工程研究所碩士論文,2004。
    27. 鄭富書、李怡德、黃燦輝,“軟弱砂岩遇水軟化行為試驗研究”,1996岩盤工程論文集,國立台灣大學,台北,pp.373-382,1996。
    28. 賴佳澤,“利用環形剪力試驗探討具節理面之軟弱砂岩受振力學特性”,國立成功大學土木工程研究所碩士論文,2009。
    29. 嚴國禎,“錦水頁岩殘餘強度與草嶺邊坡穩定關係之研究”,國立台灣大學土木工程學研究所碩士論文,2000。
    30. 蘇苗彬、何敏龍,“岩石節理面粗糙係數之尺寸效應”,興大工程學報,卷8,2期,pp.1-9,1997。
    31. ASTM,Standard practices for preparing rock core specimens and determining dimensional and shape tolerances,Annual Book of ASTM Standard, Designation D4543-04, 2000.
    32. Bandis, S., Lumsden, A.C. and Barton, N.R., “Experimental Studies of Scale Effects on the Shear Behaviour of Rock Joints”, Int. J. of Rock Mech. Min. Sci. And Geomech.Abstr. Vol.18, pp.1-21, 1981.
    33. Barton, N.R., and Chubey V., “The Shear Strength of Rock Joints in Theory and Practice”, Rock Mechanics and Rock Engineering, Vol. 10, pp. 1-54, 1977.
    34. Barton, M.E., “Cohesive sands:The natural transition from sands to sandstones”,Geotechnical Engineering of Hard Soil-Soft Rocks, Anagnostopoulos et al. (end), 1993, Balkema, Rotterdam, ISBN 90 5410 3442, pp.367-374, 1993.
    35. Bieniawski, Z.T., “Mechanics Designin Mining Tunnrling”, Balkema, Rotterdam, 1984.
    36. Bishop﹐A.W.﹐Green﹐G.E.﹐Garaga﹐V.K.﹐Andresen﹐A.﹐and Brown﹐ J.D.﹐“A New Ring Shear Apparatus and its Application to the Measurement of Residual Strength﹐” Geotechnique﹐Vol.21﹐No.4﹐pp.273-328﹐1971.
    37. Bromhead, E.N., “Simple ring shear apparatus,” Ground Engineering,Vol. 12,N5, p40-44,1979
    38. Brown, N. and Chouby, V., “Shear Strengh Characteristics of the Delabole Slates”, Proc. Conf. on Rock Engineering. Newcastle, pp. 33-51, 1977.
    39. Dobereiner, L.,De Freitas, M.H., “Geotechnical Properties of Weak sandstones”, Geotechnique, Vol. 36, No.1, pp.79-94, 1986.
    40. Gamble, J.C., “ Durability-plasticity classification of shales and other argillaceous rocks”, Ph. D. thesis, University of Illinois, 1971.
    41. Goodman, R.E., “The Deformability of Joints, in Determination of the In-situ Modulus of Deformation of Rock”, pp.174-196, 1969.
    42. Griffith, A.A., “The Phenomena of Rupture and Flow in Solids”, Phil Trans. Roy. Soc. London, Ser. A, pp.163-198, 1921.
    43. Head, K. H., “Manual of Soil Laboratory Testing,” Vol.2: Permeability, Shear Strength and Compressibility Tests, 2ed, Pentech press, London, 1994.
    44. Hoek, E. and Brown, E.T., “Underground Excavation in Rock,Chapter 6”, The Institution of Mining and Metallurgy, London, pp.131-182,1980.
    45. ISRM, Basic geotechnical description of rock masses, ISRM commission on classification of rocks amd rock masses, Internatioal Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol. 18, pp. 85~110, 1981.
    46. Johnston, I. W., “Soft Rock Engineering”, Comprehensive Rock Engineering, ED.J.A. Hudson, Vol.1, pp.367-393, 1993.
    47. Kodikara, J. K., and Johnston, I. W., “Shear Behaviour of Irregular Triangular Rock-Concrete Joints”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 31 ,No4., pp. 313-322, 1994.
    48. Ladanyi ,B. and Archambault, G., “Simulation of Shear Behavior of a Jointed Rock Mass”, Proc.11th. Symposum on Rock Mechanics, AIME, pp.105-125, 1970.
    49. Mohr, C.O., “ Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials”, Z. Ver. Dtsch. Ing., 44, pp.1524~1530, pp.1571~1577, 1900.
    50. Ohnishi, Y. and Yoshinaka, R., “Laboratory Investigation of Scale Effect in Mechanical Behavior of Rock Joint”, Regional Conference of Fractured and Jointed Rock Masses,Lake Tahoe, CA. June 3–5,pp.484-489,1992.
    51. Oliverira, R., “Weak Rock Materials”, The Engineering Geology of Weak Rock, Cripps et al. (eds.), Balkma, Rotterdam, pp.5-15, 1993.
    52. Patton, F.D., “Multiple Model of Shear Failure in Rock”, Proc. 1st Cong. of ISRM, Libson, pp.509-513, 1966.
    53. Pratt, H.R., Black, A.D. and Brace, W.F., “Friction and Jointed Quartz Diorite”, Proc. 3rd Conf. Int. Soc. For Rock Mechanics. Dever, CO. Vol. IIA, pp.306-310, 1974.
    54. Skempton, A.W., ”Long-term stability of clay slopes”, Geotechnique Vol.14,No.2, pp.77-101,1964.
    55. Skemptonm, A.W. and Petly, D.J., “The Strength along Structural Discontinuities in Stiff Clays,” Proc. Geotechnical Conf. Oslo2, pp.29-46, 1967a.
    56. Skempton﹐A.W.﹐“Residual Strength of Clays in Landslides﹐Folded Strata and the Laboratory”﹐Geotechnique﹐Vol.35﹐No.1﹐pp. 3-18﹐1985.
    57. Tse, R. and Cruden, D.M, “Estimation Joint Roughness Cofficients”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 16, pp. 303-307,1979.
    58. Xu, S.﹐and M. H. de Freitas, “Use of a Rotary Shear Box for Testing the Shear Strength of Rock Joints”﹐Geotechnique﹐Vol. 38﹐No. 2﹐pp.301-309﹐1988.

    無法下載圖示 校內:2013-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE