簡易檢索 / 詳目顯示

研究生: 郭建志
Guo, Jian-Jhih
論文名稱: TG-interacting factor在三氧化二砷調控p21WAF1/CIP1啟動子中所扮演的角色
Role of TG-interacting factor in As2O3-regulated p21WAF1/CIP1 promoter expression
指導教授: 黃暉升
Huang, Huei-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 40
中文關鍵詞: 螢光能量共振轉移三氧化二砷
外文關鍵詞: arsenic trioxide, p21, TGIF, c-Jun, FRET
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三氧化二砷可以有效的用來治療急性前髓性細胞白血病病人而且對於人類實體瘤細胞也有造成細胞凋亡或細胞週期停滯的能力。抑癌基因p21WAF1/ CIP1 (p21)會抑制細胞週期的進行。我們之前的研究發現三氧化二砷可以透過兩條路徑來調控p21。其中之一為p21被活化的EGFR-Ras-Raf-ERK1/2路徑,另一條為p21被抑制的JNK路徑。我們也發現三氧化二砷會磷酸化c-Jun的N端並和TG-interacting factor (TGIF)作用,來抑制p21的活化。TGIF可以經由兩種機制來抑制轉錄,直接和啟動子上的homeodomain作用,或是透過吸引其他的轉錄因子例如c-Jun。因此,本實驗的目的是探討TGIF在三氧化二砷調控的p21啟動子以及在癌症中所扮演的角色。首先,我們證明了TGIF位於細胞核內;為了證明TGIF和c-Jun在完整的細胞中會有交互作用,我們利用螢光能量共振轉移(FRET)的技術。FRET是一種確認蛋白質在完整細胞中是否有交互作用的方法。我們建構了CFP-c-Jun和YFP-TGIF兩個融合蛋白質。透過FRET的方式我們觀察到人類子宮頸上皮癌A431細胞株裡CFP-c-Jun和YFP-TGIF有交互作用。利用第63、73胺基酸突變的融合蛋白質c-Jun(S63/73A)或不同片段的TGIF來探討交互作用的位置,結果證明了c-Jun N端的磷酸化和TGIF交互作用是必須的而且c-Jun是透過TGIF的N端來進行交互作用。另外也觀察到尿路上皮癌的病人檢體中,TGIF蛋白質有過度表現的現象。未來我們會進一步探討三氧化二砷對TGIF是否有轉譯後修飾的作用也會繼續觀察TGIF在尿路上皮癌細胞中過度表現的意義。

    As2O3 has been effectively used to treat acute promyelocytic leukemia and can induce apoptosis or cell cycle arrest in human solid tumors. p21WAF1/ CIP1 (p21) is well known for its function as a cell cycle inhibitor and a tumor suppressor. In our previous results, As2O3 can regulate p21 expression through at least two opposing pathways. One is the EGFR-Ras-Raf-ERK1/2 pathway, which is involved in the As2O3-induced p21 activation. The other is the JNK pathway, which inhibits As2O3-induced p21 activation. We further found that N-terminal domains of c-Jun could be phosphorylated by As2O3-induced JNK activation, bound to TG-interacting factor, and then repressed p21 activation. TG-interacting factor (TGIF) is a transcriptional co-repressor or repressor and functions as a co-repressor through two mechanisms. TGIF directly binds the promoter via the homeodomain to repress the transcription of promoter, or serve as a repressing partner associated with other transcription factor like c-Jun. Therefore, the aim of this study is to study the role of TGIF in As2O3-regulated p21 promoter and in cancer cells. First, we demonstrated that TGIF localizes in nucleus. To confirm the interaction of TGIF with c-Jun in intact cells, we performed fluorescent resonance energy transfer (FRET) assay. FRET is a suitable methodology to confirm protein-protein interactions in intact cells. We constructed fusion proteins of CFP-c-Jun or YFP-TGIF, respectively. After over-expression of these two fusion proteins in human epidermoid carcinoma A431 cells, the protein-protein interaction was observed by FRET in fixed cells. The results showed the occurrence of intermolecular FRET between CFP-c-Jun and YFP-TGIF. We also used fusion proteins of point mutation c-Jun (S63/73A) or various truncations of TGIF protein to study the direct binding domains. The requirement of c-Jun N-terminal phosphorylation for the interaction and the N-terminal domain of TGIF as a binding site to c-Jun were also proved. Furthermore, over-expression of TGIF in urothelial cell carcinoma patient’s specimens was observed by immunohistochemistry. The post-translational modification of TGIF by As2O3 and its expression in urothelial cell carcinoma will be further elucidated in the future.

    Abstract in Chinese………I Abstract in English………II Acknowledgement…………IV Contents……………………VI List of figures…………VIII List of table………………X Introduction………………1 Specific aims……………5 Materials……………………6 Methods……………………6 Cell culture and constructs…………6 Western blot analysis………………6 Transfection and reporter gene assays…………7 Confocal laser scanning microscopy experiments…7 FRET experiments……………………………………8 Immunohistochemistry………………………………8 Results……………………………………………10 Localization of TGIF in cells…………………10 Plasmid constructs…………………………………10 Biological function of the fluorescent fusion proteins…10 Localization of fluorescent fusion proteins………………11 Interaction of TGIF with c-Jun in intact cells……………12 Analysis of interactions of c-Jun/TGIF by FRET……………12 The target domain of TGIF interacted with c-Jun…………13 Expression of TGIF in urothelial cell carcinoma…………13 Discussion………………………………………14 References………………………………………17

    1. Bagla P. and Kaiser J., India’s spreading health crisis draws global arsenic experts. Science 274: 174–175, 1996.
    2. Barbara C., Corentin S., Laurent H., Jean C., and Martine D.C., Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses. Biochem. Biophys. Res. Commun. 332: 1107–1114, 2005.
    3. Bertolino E., Reimund B., Wildt P.D., and Clerc R., A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J. Biol. Chem. 270: 31178–31188, 1995.
    4. Cavigelli M., Li W.W., Lin A., Su B., Yoshioka K. and Karin M., The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J. 15: 6269–6279, 1996.
    5. Chen G.Q., Zhu J., Shi X.G., Ni J.H., Zhong H.J., Si G.Y., Jin X.L., Tang W., Li X.S., Xong S.M., Shen Z.X., Sun G.L., Ma J., Zhang P., Zhang T.D., Gazin C., Naoe T., Chen S.J., Wang Z.Y., and Chen Z., In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88 (3): 1052-1061, 1996.
    6. Chen W., Martindale J.L., Holbrook N.J. and Liu Y., Tumor promoter arsenite activates extracellular signal regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol. Cell Biol. 18: 5178–5188, 1998.
    7. Dai J., Weinberg R.S., Waxman S., and Jing Y., Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93 (1): 268-277, 1999.
    8. David J.S. and Victoria J.A., Light microscopy techniques for live cell imaging. Science 300: 82-86, 2003.
    9. David W., Roger S.L., Laurie-Anne C.S., and Joan M., Multiple modes of repression by the Smad transcriptional corepressor TGIF. J. Biol. Chem. 274: 37105–37110, 1999.
    10. El-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W. and Vogelstein B., WAF1, a potential mediator of p53 tumor suppression. Cell 75 (4): 817-825, 1993.
    11. Fotedar R., Brickner H., Saadatmandi N., Rousselle T., Diederich L., Munshi A., Jung B., Reed J.C. and Fotedar A., Effect of p21WAF1/CIP1 transgene on radiation induced apoptosis in T cells. Oncogene 18 (24): 3652-3658, 1999.
    12. Gripp K.W., Wotton D., Edwards M.C., Roessler E., Ades L., Meinecke P., Richieri-Costa A., Zackai E.H., Massagué J., Muenke M. and Elledge S.J., Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat. Genet. 25 (2): 205-208, 2000.
    13. Guadagno T.M. and Newport J.W., Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity. Cell 84: 73–82, 1996.
    14. Haffner R. and Oren M., Biochemical properties and biological effects of p53. Curr. Opin. Genet. Dev. 5: 84–90, 1995.
    15. Harper J.W., Adami G.R., Wei N., Keyomarsi K. and Elledge S.J., The p21 Cdk-interacting protein CIP1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75 (4): 805-816, 1993.
    16. Huang H.S., Liu Z.M., Ding L., Chang W.C., Hsu P.Y., Wang S.H., Chi C.C. and Chuang C.H., Opposite effect of ERK1/2 and JNK on p53-independent p21WAF1/CIP1 activation involved in the arsenic trioxide-induced human epidermoid carcinoma A431 cellular cytotoxicity. J. Biomed. Sci. 13: 113–125, 2006.
    17. Jacks T. and Weinberg R.A., Cell-cycle control and its watchman. Nature 381: 643–644, 1996.
    18. Koichi N., Issei I., Atiphan P., Yoji F., Yutaka S., Masayuki I., Teruo A. and Johji I., Novel targets for the 18p11.3 amplification frequently observed in esophageal squamous cell carcinomas. Carcinogenesis 23: 19-24, 2002.
    19. Liu Y., Guyton K.Z., Gorospe M., Xu Q., Lee J.C. and Holbrook N.J., Differential activation of ERK, JNK/ SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic. Biol. Med. 21: 771–781, 1996.
    20. Liu Z.M. and Huang H.S., As2O3-induced c-Src/EGFR/ERK signaling is via Sp1 binding sites to stimulate p21WAF1/CIP1 expression in human epidermoid carcinoma A431 cells. Cell. Signal. 18 (2): 244-255, 2006.
    21. Mar L., and Hoodless P.A., Embryonic fibroblasts from mice lacking Tgif were defective in cell cycling. Mol. Cell. Biol. 26: 4302-4310, 2006.
    22. Melhuish T.A. and Wotton D., The interaction of the carboxyl terminus-binding protein with the Smad corepressor TGIF is disrupted by a holoprosencephaly mutation in TGIF. J. Biol. Chem. 275 (50): 39762-39766, 2000.
    23. Miller W.H. Jr., Schipper H.M., Lee J.S., Singer J. and Waxman S., Mechanisms of action of arsenic trioxide. Cancer Res. 62: 3893–3903, 2002.
    24. Murgo A.J., Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute cooperative research and development studies. Oncologist 6 (Suppl 2): 22–28, 2001.
    25. Park J.W., Jang M.A., Lee Y.H., Passaniti A., and Kwon T.K., p53-independent elevation of p21 expression by PMA results from PKC-mediated mRNA stabilization. Biochem. Biophys. Res. Commun. 280 (1): 244-248, 2001.
    26. Park W.H., Seol J.G., Kim E.S., Hyun J.M., Jung C.W., Lee C.C., Kim B.K., and Lee Y.Y., Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res. 60 (11): 3065-3071, 2000.
    27. Pessah M., Prunier C., Marais J., Ferrand N., Mazars A., Lallemand F., Gauthier J.M., and Atfi A., c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity. Proc. Natl. Acad. Sci. 98: 6198-6203, 2001.
    28. Rotterud R., Fossa S.D. and Nesland J.M., Protein networking in bladder cancer: Immunoreactivity for FGFR3, EGFR, ERBB2, KAI1, PTEN, and RAS in normal and malignant urothelium. Histol. Histopathol. 22: 349-363, 2007.
    29. Russo T., Zambrano N., Esposito F., Ammendola R., Cimino F., Fiscella M., Jackman J., O’Connor P.M., Anderson C.W. and Appella E., A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J. Biol. Chem. 270: 29386–29391, 1995.
    30. Seo S.R., Lallemand, F., Ferrand, N., Pessah, M., L’Hoste, S., Camonis, J., and Atfi, A., The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J. 23: 3780–3792, 2004.
    31. Sherr C.J. and Roberts J.M., CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13: 1501–1512, 1999.
    32. Tseng, W.P., Effects and dose-response relationships of skin cancer and Blackfoot disease with arsenic. Environ. Health Perspect. 19: 109–119, 1977.
    33. Vahter, M., Species differences in the metabolism of arsenic compounds. Appl. Organomet. Chem. 8: 175–182, 1994.
    34. Wallis, D., and Muenke, M., Mutations in holoprosencephaly. Hum. Mutat. 16: 99–108, 2000.
    35. Weil M., Raff M.C., and Braga V.M., Caspase activation in the terminal differentiation of human epidermal keratinocytes. Curr. Biol. 9 (7): 361-364, 1999.
    36. Zhang Y., Fujita N., and Tsuruo T., Caspase-mediated cleavage of p21WAF1/CIP1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene 18 (5): 1131-1138, 1999.

    下載圖示 校內:2010-08-17公開
    校外:2010-08-17公開
    QR CODE