簡易檢索 / 詳目顯示

研究生: 吳家任
Wu, Jia-Ren
論文名稱: 相行為對電紡亂排聚苯乙烯製程之影響
Effects of phase behavior on the electrospinning of atactic polystyrene solution
指導教授: 王紀
wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 89
中文關鍵詞: 電紡絲亂排聚苯乙烯液柱形態膠化
外文關鍵詞: electrospinning, atactic polystyrene, morphology of jet, gel
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 亂排聚苯乙烯(atactic polystyrene)溶在鄰二氯苯(o-dichlorobenzene)時外觀會呈現白色混濁樣,一開始分不清楚這樣的外觀是屬於相分離還是膠化,當溶液進行加熱後會由白色混濁逐漸轉變成澄清透明,但加熱後放置於室溫其溶液外觀漸漸由澄清又轉變回混濁,確定白色混濁外觀不是aPS未溶乾淨所造成。
    不同濃度溶液取樣滴於凹潮玻片並在充滿氮氣之Hot stage下進行升降溫觀察發現所有濃度在75 oC時完全沒有結構,不同濃度均以60 oC/min降溫至特定溫度時會產生樹枝狀結構,而發現其樹枝狀結構產生溫度隨濃度上升而提高。
    aPS/o-DCB相圖為UCST,本實驗所選用之aPS分子量為3x105 g/ mol,經由計算可得c約為2 wt%,而實驗中最低濃度7 wt%應屬於相圖的右半部,但相圖中右半部為隨濃度變高,其相分離溫度越低,另外相分離結構為了使表面能較低,其結構多為雙連續或是顆粒狀,所以降溫後所產生之結構應屬於膠化,並不是相分離。
    利用高溫電紡絲裝置電紡高分子溶液,來比較有無結構之影響,並觀察Cone、 Jet、纖維形態,經由比較後發現,其結構對電紡絲影響不大。
    利用乾玻片和滴有nonsolvent的silicone rubber spacer收集液柱發現,乾玻片會有半透明的液柱坍塌,而滴有nonsolvent的silicone rubber spacer可以將液柱內的結構凍住,利用SEM可以觀察到其內部經電紡拉伸而相分離的string結構。

    aPS/o-DCB solution belongs to UCST.Thec of our experiment is 2 wt%, the concentration of the experiment was larger than c. In the case of phase separation, the right side of the UCST is the phase separation temperature decreases with increasing concentration. However, the experimental results were that the temperature of the structure increased with increasing concentration, so the structure should belong to gel.

    Using high temperature electrospinning aPS/o-DCB to compare the effects of gel, by observing cone, jet and fiber type, it was found that gel had little effect on electrospinning.

    The internal structure of the liquid jet can be frozen by using a nonsolvent(methanol) silicon rubber spacer. The structure of the string separated by electrospinning due to the internal structure can be observed by SEM.

    摘要 ii Extended Abstarct iii 致謝 xi 目錄 xiii 表目錄 xvi 圖目錄 xvii 符號 xxii 一、前言 1 二、簡介 2 2.1 電紡絲模式 2 2.1.1 dripping mode 2 2.1.2 pulsating mode 2 2.1.3. cone-jet mode 3 2.1.4. multi-jet mode 3 2.2 電紡絲實驗之觀察 3 2.2.1 Taylor cone和 jet形態 3 2.2.2 纖維形態 3 三、文獻回顧 7 3.1 聚苯乙烯(Polystyrene, PS) 7 3.1.1 聚苯乙烯簡介 7 3.1.2 聚苯乙烯之電紡絲 7 3.2 亂排聚苯乙烯膠化 8 3.3 高溫電紡絲 9 3.4 模擬液柱拉伸 10 3.5 電紡液柱甩動行為 11 四、實驗 26 4.1 實驗藥品 26 4.2 實驗儀器 27 4.2.1 溶液配置 27 4.2.2 電紡絲設備 27 4.3.3 分析儀器 30 4.3 實驗步驟 31 4.3.1 製做core/shell電紡絲所需用針 31 4.3.2 配置aPS/o-DCB含鹽(Bu4NClO4)高分子溶液 31 4.3.3 溶液導電度量測 31 4.3.4 將高分子溶液滴入hot stage內做升降溫觀察,並決定相圖 32 4.3.5 電紡絲實驗,如圖4-1 32 4.3.6 以玻片收集電紡絲液柱 33 4.3.7 OM觀察電紡玻片和silicone rubber spacer收集液柱 33 4.3.8 SEM實驗步驟 34 4.3.9 實驗流程圖 35 五、結果與討論 38 5.1 高分子溶液觀察 38 5.1.1 配好溶液於室溫及加熱後移至室溫靜置觀察 38 5.1.2 利用光學顯微鏡和Hotstage升降溫觀察溶液 38 5.2 電紡絲實驗 39 5.2.1 電紡絲用針 39 5.2.2 電紡溶液性質 40 5.3 電紡溫度對電紡製程影響 41 5.3.1 共同可操作電壓區間 41 5.3.2 油浴溫度設定 42 5.2.3 油浴溫度對Cone、Jet和Fiber diameter影響 42 5.2.4 液柱形態 43 六、結論 86 七、參考文獻 87

    [1]. 洪崇豪. 以電紡絲製備彈性奈米SBS纖維膜. 國立成功大學碩士論文, 台南市, 2004.
    [2]. Eda, G.; Shivkumar, S., Bead-to-fiber transition in electrospun polystyrene. Journal of Applied Polymer Science 106 (1), 475-487,(2007).
    [3]. Kim, G. T.; Lee, J. S.; Shin, J. H.; Ahn, Y. C.; Hwang, Y. J.; Shin, H. S.; Lee, J. K.; Sung, C. M., Investigation of pore formation for polystyrene electrospun fiber: Effect of relative humidity. Korean J. Chem. Eng. 22 (5), 783-788,(2005).
    [4]. Tan, H. M.; Moet, A.; Hiltner, A.; Baer, E., THERMOREVERSIBLE GELATION OF ATACTIC POLYSTYRENE SOLUTIONS. Macromolecules 16 (1), 28-34,(1983).
    [5]. Eldridge, J. E.; Ferry, J. D., STUDIES OF THE CROSS-LINKING PROCESS IN GELATIN GELS .3. DEPENDENCE OF MELTING POINT ON CONCENTRATION AND MOLECULAR WEIGHT. J. Phys. Chem. 58 (11), 992-995,(1954).
    [6]. Harrison, M. A.; Morgan, P. H.; Park, G. S., THERMOREVERSIBLE GELATION IN POLYMER SYSTEMS .1. SOL-GEL TRANSITION IN DILUTE POLYVINYL-CHLORIDE) GELS. European Polymer Journal 8 (12), 1361-&,(1972).
    [7]. Harrison, M. A.; Morgan, P. H.; Park, G. S., THERMOREVERSIBLE GELATION IN POLYMER SYSTEMS .2. GEL-SOL TRANSITION IN VINYLIDENE CHLORIDE-METHYL ACRYLATE COPOLYMER GELS. Faraday Discussions 57, 38-46,(1975).
    [8]. Takahashi, A.; Nakamura, T.; Kagawa, I., MELTING TEMPERATURE OF THERMALLY REVERSIBLE GEL .1. POLYVINYL CHLORIDE ORGANIC SOLVENT GELS. Polymer Journal 3 (2), 207-+,(1972).
    [9]. Givens, S. R.; Gardner, K. H.; Rabolt, J. F.; Chase, D. B., High-temperature electrospinning of polyethylene microfibers from solution. Macromolecules 40 (3), 608-610,(2007).
    [10]. Wang, C.; Chu, Y. L.; Wu, Y. J., Electrospun isotactic polystyrene nanofibers as a novel beta-nucleating agent for isotactic polypropylene. Polymer 53 (23), 5404-5412,(2012).
    [11]. Zeleny, J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys. Rev. 3 (2), 69-91,(1914).
    [12]. Formhals, A., Method and apparatus for spinning. US patent 2 (160), 962,(1939).
    [13]. Spivak, A. F.; Dzenis, Y. A., Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field. Appl. Phys. Lett. 73 (21), 3067-3069,(1998).
    [14]. Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P., Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13 (8), 2201-2220,(2001).
    [15]. Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P., Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 13 (8), 2221-2236,(2001).
    [16]. Feng, J. J., The stretching of an electrified non-Newtonian jet: A model for electrospinning. Phys. Fluids 14 (11), 3912-3926,(2002).
    [17]. Han, T.; Reneker, D. H.; Yarin, A. L., Buckling of jets in electrospinning. Polymer 48 (20), 6064-6076,(2007).
    [18]. Taylor, G., Proceedings of the 12th International Congress of Applied Mechanics.(1968).
    [19]. Ribe, N. M.; Lister, J. R.; Chiu-Webster, S., Stability of a dragged viscous thread: Onset of "stitching" in a fluid-mechanical "sewing machine". Phys. Fluids 18 (12), 8,(2006).
    [20]. Carroll, C. P.; Joo, Y. L., Electrospinning of viscoelastic Boger fluids: Modeling and experiments. Phys. Fluids 18 (5), 14,(2006).
    [21]. Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87 (9), 4531-4547,(2000).
    [22]. Yarin, A. L.; Koombhongse, S.; Reneker, D. H., Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89 (5), 3018-3026,(2001).
    [23]. Reneker, D. H.; Kataphinan, W.; Theron, A.; Zussman, E.; Yarin, A. L., Nanofiber garlands of polycaprolactone by electrospinning. Polymer 43 (25), 6785-6794,(2002).
    [24]. Eda, G.; Liu, J.; Shivkumar, S., Solvent effects on jet evolution during electrospinning of semi-dilute polystyrene solutions. European Polymer Journal 43 (4), 1154-1167,(2007).
    [25]. Yang, C. S. C.; Wilson, P. T.; Richter, L. J., Structure of polystyrene at the interface with various liquids. Macromolecules 37 (20), 7742-7746,(2004).
    [26]. Horinouchi, A.; Yamada, N. L.; Tanaka, K., Aggregation States of Polystyrene at Nonsolvent Interfaces. Langmuir 30 (22), 6565-6570,(2014).
    [27]. Wong, D. T.; Wang, C.; Pople, J. A.; Balsara, N. P., Effect of Nonsolvent Exposure on Morphology of Mesoporous Semicrystalline Block Copolymer Films. Macromolecules 46 (11), 4411-4417,(2013).
    [28]. Alhassan, Y.; Kumar, N.; Bugaje, I. M.; Pali, H. S.; Kathkar, P., Co-solvents transesterification of cotton seed oil into biodiesel: Effects of reaction conditions on quality of fatty acids methyl esters. Energy Conv. Manag. 84, 640-648,(2014).
    [29]. Seeger, T. S.; Rosa, F. C.; Bizzi, C. A.; Dressler, V. L.; Flores, E. M. M.; Duarte, F. A., Feasibility of dispersive liquid-liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 105, 136-140,(2015).
    [30]. Sun, K.; Xia, Y. J.; Ouyang, J. Y., Improvement in the photovoltaic efficiency of polymer solar cells by treating the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) buffer layer with co-solvents of hydrophilic organic solvents and hydrophobic 1,2-dichlorobenzene. Sol. Energy Mater. Sol. Cells 97, 89-96,(2012).

    下載圖示 校內:2023-08-13公開
    校外:2023-08-13公開
    QR CODE