簡易檢索 / 詳目顯示

研究生: 陳俊宇
Chen, Jiun-Yu
論文名稱: OpenFOAM 於驅逐艦聲納罩外型優化之應用
Improvement of Design of Destroyer Sonar Dome Geometry using OpenFOAM
指導教授: 吳炳承
Wu, Ping-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 聲納罩優化設計計算流體力學OpenFOAM
外文關鍵詞: Sonar Dome Design, CFD, OpenFOAM
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以設計驅逐艦聲納罩外形使其總阻力變小為首要目標。減阻效果定義為原型驅逐艦附加聲納罩與安裝新型聲納罩船型相比總阻力的減少率。模擬軟體為OpenFOAM 6,使用VOF (Volume of Fluid)法對空氣與水的雙相流進行計算,並利用k-ω SST(shear stress transport)模型對紊流進行模擬。研究條件採用無風浪的靜水環境,並以國立成功大學系統及船舶機電工程學系拖航水槽尺寸做為計算域,船模速度設為巡航船速1.755公尺/秒。
    研究分成兩個階段。第一階段對原船型建立疏、中、密三套不同大小的網格,並各自進行阻力計算。計算結果與實驗測得阻力值進行比較,不同網格間模擬誤差的關係必須通過ITTC 7.5-03-01-01建議的驗證與確認(V&V,Verification & Validation)方法,確認具有足夠的可信度。第二階段利用通過V&V的網格設定對不同聲納罩外型進行模擬。透過將船體幾何變形-模擬的循環過程,不斷計算並找出具有最低阻力的外型。
    最終我們提出拉長聲納罩的F系列與調整聲納罩後方坡度的Sa、Sb系列共三組設計。F系列具有最佳17.14%的減阻效果,但需要將聲納罩拉長7.28%倍的垂標間長。Sa系列具有最佳1.94%的減阻效果,調整後的坡度為16.023度。Sb系列具有最佳3.32%的減阻效果,調整後的坡度為15.285度。Sa和Sb的差異主要是聲納罩前緣的弧形。

    The purpose of this study is to find a better sonar dome design which has lower total resistance compared to the prototype. In this research, the experimental environment is set up as calm water condition. The model speed is 1.765m/s, corresponding to 16 knots cruising speed for full scale ship. Ship motion is not considered. The CFD software that we used is OpenFOAM 6, the solver is interFOAM. The 3D model is built in Rhino 6. Three sonar dome geometries are proposed as the result of this study. F-0.45 has a longer sonar dome which has the same design concept with the bulbous bow of container ship, and it has 17.14% total resistance reduction. Sa-16.023 and Sb-15.285v are both having a sonar dome back slope change. The difference between them is the front edge profile. Without changing the front edge for the consideration of installing the original sonar equipment, Sa-16.023 has 1.94% resistance reduction. On the other hand, Sb-15.285v has a deformation on the front edge. We are not sure if the sonar equipment can fit in, but the 3.32% resistance reduction is the optimal result for S-series design.

    中文摘要 I 延伸摘要 II 誌謝 X 目錄 XI 圖目錄 XIII 表目錄 XVI 符號說明 XVII 第一章、緒論 1 1-1、研究背景 1 1-2、問題定義、研究架構與優化流程 2 1-3、文獻回顧 3 1-4、艦艏聲納罩 5 第二章、理論背景 7 2-1、統御方程式 7 2-2、k-ω SST紊流模型 9 2-3、OpenFOAM求解器 11 2-4、阻力構成 14 第三章、前處理 15 3-1、幾何形狀 15 3-2、計算域及邊界條件設置 16 3-3、網格加密設定 20 第四章、船體與聲納罩外形建構 22 4-1、建構方式 22 4-2、聲納罩前伸構型說明 23 4-3、聲納罩背面坡度構型說明 24 第五章、模擬結果與討論 30 5-1、原船型阻力V&V分析 30 5-2、F 系列阻力分析 34 5-3、S 系列阻力分析 37 5-4、流場分析比較 48 第六章、結論與未來展望 69 6-1、結論 69 6-2、未來展望 69 參考資料 70

    [1]、Reza Yousefi, Rouzbeh Shafaghat, Mostafa Shakeri. “Hydrodynamic analysis techniques for high-speed planing hulls”, Applied Ocean Research, Volume 42, Pages 105-113, 2013.
    [2]、Hafizul Islam, C. Guedes Soares. “Uncertainty analysis in ship resistance prediction using OpenFOAM”, Ocean Engineering, Volume 191, 105805, 2019.
    [3]、Zhirong Shen, Richard Korpus. “Numerical Simulations Of Ship Self-Propulsion And Maneuvering Using Dynamic Overset Grids In Openfoam”, Conference: Tokyo 2015 A Workshop on CFD in Ship Hydrodynamics, Japan, volume lll, 2015.
    [4]、Jianhua Wang, Decheng Wan. “Breaking Wave Simulations of High-speed Surface Combatant using OpenFOAM”, The 8th International Conference on Computational Methods, China, 2017.
    [5]、A. Olivieri, F. Pistani, A. Avanzini, F. Stern and R. Penna. “Towing Tank Experiments of Resistance, Sinkage and Trim, Boundary Layer, Wake, and Free Surface Flow Around a Naval Combatant Insean 2340 Model”, 2001.
    [6]、Metin Kemal Gokce, Omer Kemal Kinaci. ” Numerical simulations of free roll decay of DTMB 5415”, Ocean Engineering, Volume 159, Pages 539-551, 2018.
    [7]、S. Bhushan, H. Yoon, F. Stern, E. Guilmineau, M. Visonneau, S. L. Toxopeus, C. Simonsen, S. Aram, S. Kim, and G. Grigoropoulos. ”Assessment of Computational Fluid Dynamic for Surface Combatant 5415 at Straight Ahead and Static Drift β = 20 deg”, ASME. J. Fluids Eng, 2019.
    [8]、Stefan Harries, Claus Abt, Karsten Hochkirch. ”Modeling Meets Simulation – Process Integration To Improve Design”, 2004.
    [9]、Hyunyul Kim, Chi Yang, Francis Noblesse. ”Hull Form Optimization for Reduced Resistance and Improved Seakeeping via Practical Designed-Oriented CFD Tools”, Grand Challenges in Modeling & Simulation, Canada, 2010.
    [10]、Jong-Heon Park, Jung-Eun Choil, Ho-Hwan Chun. ”Hull-form optimization of KSUEZMAX to enhance resistance performance”, International Journal of Naval Architecture and Ocean Engineering, Volume 7, Issue 1, Pages 100-114, 2015.
    [11]、F.R. Menter. “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA-Journal, Vol.32(8), pp. 269-289, 1994
    [12]、C.W Hirt, B.D Nichols. ” Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics, Volume 39, Issue 1, Pages 201-225, 1981.
    [13]、R. I. Issa. “Solution of the implicitly discretised fluid flow equations by operator-splitting”, Journal of computational physics, 62(1), 40-65, 1986.
    [14]、S. V. Patankar, D.B. Spalding. “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, Int. J. of Heat and Mass Transfer, Volume 15, Issue 10, Pages 1787-1806, October 1972.
    [15]、ITTC-Quality Manual 7.5-03-01-01, CFD General. Uncertainty Analysis in CFD verification and Validation Methodology and Procedures. ITTC Recommended Procedures and Guidelines, 2021.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE