| 研究生: |
李梵滔 Thao, Le Van |
|---|---|
| 論文名稱: |
孤立波在重直牆面上的傳播與反射 Solitary Wave Propagation and Reflection at Vertical Wall |
| 指導教授: |
許泰文
Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 外文關鍵詞: | solitary wave, Matlab code, vertical wall, reflection |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis investigated reflection of solitary wave propagating at vertical wall. This research is based on the boundary condition at vertical wall (velocity at wall approximate equals zero). Developed Matlab code is used to simulate wave reflection to account for maximum wave amplitude at vertical wall in six different cases. The maximum wave runup at wall is approximately twice of the incident wave amplitude. These results compared favorably with results that are calculated based on Byatt-Smith (1971) and Philip-Khaled’s (2004) formula. It was found that there exists a slight phase shift of the maximum wave runup with Byatt-Smith (1971) and Philip-Khaled’s (2004) formula for the case of a small amplitude such as ε = 0.1, ε = 0.2 and ε = 0.3, where ε = a/h is the wave nonlinearity. A larger incident wave amplitude (ε = 0.4, ε = 0.5) would produce a more obviously phase error.
1. Benney, D. J., and Luke, J. C. On the interactions of permanent waves of finite amplitude. J. Math. and Phys. 43, 309-313(1964).
2. Boussinesq, J. Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, encommuniquant au liquide contenu dans ce canal des vitesses sensiblement pareil les de la surface au fond, J. Math.Pures Appl., 17, 55-108 (1872).
3. Byatt-Smith, J. G. B. An integral equation for unsteady surface waves and a comment on the Boussinesq equation. J. Fluid Mech. 49, 625-633 (1971).
4. Chan, R. K. C., and Street, R. L. A computer study of finite-amplitude water waves. J. Comp. Phys. 6, 68-94 (1970).
5. Fenton, J. A ninth-order solution for the solitary wave. J. Fluid Mech, 53, 257-271 (1972).
6. Gorning, D. G. Tsunamis- the propagation of long waves onto a shelf. PhD thesis of the California Institute of Technology, Pasadena, California (1978).
7. Gorning, D. G., and Raichlen, F. Propagation of long waves onto shelf. J. Waterw, Port, Coastal Ocean Div, ASCE, 118, 43–61 (1992).
8. Grimshaw, R. The solitary wave in water of variable depth. Part 2. J. Fluid Mech.vol 46, 611-622 (1971)
9. Huang, Z., and Yuan, Z. Transmission of solitary waves through slotted barriers: A laboratory study with analysis by a long wave approximation. J. Hydro-environment, Research 3, 179-185 (2010).
10. Korteweg, D. J., and de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mug. 39, 422- 443 (1895).
11. Laitone, E. V. The second approximation to cnoidal and solitary waves. J. Fluid Mech. 9, 430-444 (1960).
12. Lee, J. J., Skjelbreia, J. E., and Raichlen, F. Measurements of velocities in solitary waves. J. of Waterway, Port, Coastal, and Ocean Eng, ww2(108), 200-218 (1982).
13. Liu, P. L. F., Synolakis, C., and Yeh, H. H. Report on the international workshop on long wave runup. J. Fluid Mech, vol 229, 675-688 (1991).
14. Losada, M. A., Vidal, C., and Medina, R. Experimental study of the evolution of a solitary wave at an abrupt junction. J. Geophysical Res, 94(C10), 14557-14566 (1989).
15. Madsen, O. S., and Mei, C. C. The transformation of a solitary wave over an uneven bottom. J. Fluid Mech. 39, 781-791 (1969).
16. Madsen, P. A., Fuhrman, D. R., and Schaffer, H. A. On the solitary wave paradigm for tsunami. J. Geophys. Res., 113 C12012, 22pp. doi: 10.1029/2008JC004932 (2008).
17. McCowan, J. On the solitary wave. Phil. Mag, vol 32, 45-48 (1891).
18. Miles, J. W. Obliquely interacting solitary waves. J. Fluid Mech. 79, 157-169 (1977).
19. Oikawa, M., and Yajima, N. Interactions of solitary waves-A perturbation approach to nonlinear systems. J. Phys. Sot. Japan 34, 1093-1099 (1973).
20. Philip, L. F. L., and Khaled, A. B. Solitary wave runup and force on a vertical barrier. J. Fluid. Mech. 505, 225-233 (2004).
21. Power, H. On cylindrical solitary waves. Ph.D. thesis, The University of Iowa (1981).
22. Power, H., and Chwang, A. T. Reflection of a planar solitary wave. Wave motion. 6, 183-195 (1984).
23. Reyleigh, L. On waves. Phil. Mag. 1 (5), 257-279 (1876).
24. Russell, J. S. Report on waves. Proc. 14th Meeting, Brit. Ass. Adv. Sci, York, 311-39 (1845).
25. Seabra-Santos, F. J Renouard, D. P. and Temperville, A. M. Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J . Fluid Mech. 176, 117-134 (1987).
26. Synolakis, C. E and Bernad, E. N. Tsunami science before and after boxing day. Phil. Trans of the Royal Society. A 364 (2006).
27. Yasuda, T., Mutsuda, H. and Mizutani, N. Kinematics of overturning solitary waves and their relations to breaker types. Coast. Eng., 29, 317–346 (1997).
28. Whitham, G.B. Linear and Nonlinear Waves. Wiley, New York (1974).