| 研究生: |
李友吉 Li, Yu-Chi |
|---|---|
| 論文名稱: |
利用微弧陽極氧化法製備具生物活性多孔含鍶鍍層於鉭基材之研究 Porous Coatings Incorporating Strontium on Biomedical Tantalum Through Micro-Arc Oxidation |
| 指導教授: |
王清正
Wang, Ching-Cheng |
| 共同指導教授: |
李澤民
Lee, Tzer-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 微弧陽極氧化 、鉭 、Ta2O5 、鍶 |
| 外文關鍵詞: | Micro-arc oxidation, Tantalum, Ta2O5, Strontium |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用微弧氧化 (Micro-arc oxidation, MAO)法,利用不同鍶濃度之電解液通入高電壓,於材料表面形成微弧火花進而形成氧化層,將生醫用鉭基材 (ASTM F-560)上披覆上一層含有鍶鈣磷成分之氧化鉭鍍層,並在表面上產生分布均勻的孔洞。目的是為了探討材料表面不同鍶濃度對MC3T3-E1細胞活性之影響。X-ray繞射儀與EDS成分分析儀鑑定披覆鍍層之相組成及成分,LV-SEM觀察經MAO處理後的表面形態與厚度。結果發現,鍍層主要成分為Ta2O5,且在氧化層當中含有鈣磷鍶三種元素。當電壓為200 V以下時,其表面為陽極氧化反應,無微弧氧化之火花產生;而在電壓200 V以上時,表面開始產生微弧氧化之火花現象,且表面反應隨著電壓之提升而增大。經由不同鍶濃度之電解液反應過後之試片表面,所形成之厚度並無明顯差異,平均落在5.03~5.39 μm之間。親水性方面,經MAO處理後的試片,與未處理之材料相比皆有非常良好的親水性。細胞相容性方面,將MC3T3-E1細胞分別培養於基材上,探討其生物活性反應。利用細胞增生測試 (Methylthiazoletetrazolium assay, MTT assay),將細胞培養於試片1、3與7天,探討其增生能力,結果顯示細胞在鉭基材上與鈦基材相比,有較好之增生能力,生長最為迅速。另外測試細胞分生能力 (Alkaline phosphate activity assay, ALP assay),當改質過後之鉭片其鍶濃度為5 %時,對較其他試片有最好的分生能力。LV-SEM觀察細胞培養1、3與24小時的細胞形態,發現細胞在改質過後的試片貼附能力最好,表示經由微弧氧化改質過後之試片表面結構有較好的細胞親和性。上述結果顯示鍶元素濃度的不同的確會影響細胞的形態與反應,表面鍶濃度含量低的試片有較好的細胞反應。
Containing Sr-Ca-P (Strontium Calcium phosphorus) ceramics layer were bioactive materials. We used micro-arc oxidation (MAO) to manufacture Ta2O5 with Sr-Ca-P porous coatings on tantalum substrates. The aim of this study was to fabricate porous Sr-Ca-P-containing coatings on the tantalum surface using the MAO technique and evaluate the coatings topography, phase, chemical composition and cell response. We used different instruments to investigate the coatings, including X-ray diffraction, FE-SEM and EDS. The micro-arc oxidation were not begin to reaction at 200 V and begin to reaction at 300 V. The results showed that the thickness of Ta2O5 films was the same between different concentration of strontium. The Sr-Ca-P films were deposited about 5.03~5.39 μm. By contact angle analysis, all specimens showed hydrophilic property. In addition, coatings were evaluated with MC3T3-E1 which incubated on samples. Results in the cell proliferation, the pure tantalum exhibited the best biocompatibility. Sample Ta-5Sr exhibited more ALP activity than other samples. In the cell morphology, MC3T3-E1 had the faster rate accreted on sample of MAO modification. In conclusion, it was showed that the strontium of low concentration affected cell behaviors.
[1] K. Wang, “The use of titanium for medical applications in the USA”, Materials Science and Engineering A 213, 134-137, 1996.
[2] 葉哲政,“生醫用金屬產業全球布局與競爭策略”,ITIS 經濟部產業報告,2006。
[3] S.M. Cardonne, P. kumar, C.A. Michaluk, H.D. Schwartz, “Tantalum and its Alloys”, International Journal of Refractory Metals & Hard Materials 13, 187-194, 1995.
[4] J. Black, “Biologic performance of tantalum”, Clinical Materials 16, 167-173, 1994.
[5] M.D. Bermudez, F.J. Carrion, G. Martinez-Nicolas, R. Lopez, “Erosion–corrosion of stainless steels, titanium, tantalum and zirconium”, Wear 258, 693-700, 2005.
[6] H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H.M. Kim, T. Kokubo, “Bonding of Alkali and Heat-Treated Tantalum Implants to Bone”, Journal of Biomedical Materials Research 53, 28-35, 2000.
[7] K.J. Welldon, G.J. Atkins, D.W. Howie, D.M. Findlay, “Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype”, Journal of Biomedical Materials Research Part A 84, 691-701, 2008.
[8] D.M. Findlay, K. Welldon, G.J. Atkins, D.W. Howie, A.C.W. Zannettino, D. Bobyn, “The proliferation and phenotypic expression of human osteoblasts on tantalum metal”, Biomaterials 25, 2215-2227, 2004.
[9] T.A. Schildhauer, B. Robie, G. Muhr, M. Koller, “Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials”, Journal of Orthopaedic Trauma 20, 476-484, 2006.
[10] T.A. Schildhauer, E. Peter, G. Muhr, M. Koller, “Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials”, Journal of Biomedical Materials Research Part A 88, 332-341, 2009.
[11] B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, “Experimental and clinical performance of porous tantalum in orthopedic surgery”, Biomaterials 27, 4671-4681, 2006.
[12] M. Fini, A. Cigada, G. Rondelli, R. Chiesa, R. Giardino, G. Giavaresi, N.N. Aldini, P. Torricelli, B. Vicentini, “In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium”, Biomaterials 20, 1587-1594, 1999.
[13] J.M. Choi, H.E. Kim, I.S. Lee, “Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate”, Biomaterials 21, 469-473, 2000.
[14] B.H. Zhao, I.S. Lee, W. Bai, F.Z. Cui, H.L. Feng, “Improvement of fibroblast adherence to titanium surface by calcium phosphate coating formed with IBAD”, Surface and Coatings Technology 193, 366-371, 2005.
[15] I.C. Lavos-Valereto, S. Wolynec, M.C.Z. Deboni, B. Konig Jr., “In vitro and in vivo biocompatibility testing of Ti‐6Al‐7Nb alloy with and without plasma‐sprayed hydroxyapatite coating”, Journal of Biomedical Materials Research 58, 727-733, 2001.
[16] C. Massaro, M.A. Baker, F. Cosentino, P.A. Ramires, S. Klose, E. Milella, “Surface and biological evaluation of hydroxyapatite‐based coatings on titanium deposited by different techniques”, Journal of Biomedical Materials Research 58, 651-657, 2001.
[17] J. Ma, C.H. Liang, L.B. Kong, C. Wang, “Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate”, Journal of Materials Science: Materials in Medicine 14, 797-801, 2003.
[18] A. Bigi, B. Bracci, F. Cuisinier, R. Elkaim, M. Fini, I. Mayer, I.N. Mihailescu, G. Socol, L. Sturba, P. Torricelli, “Human osteoblast response to pulsed laser deposited calcium phosphate coatings”, Biomaterials 26, 2381-2389, 2005.
[19] G. Socol, P. Torricelli, B. Bracci, M. Iliescu, F. Miroiu, A. Bigi, J. Werckmann, I.N. Mihailescu, “Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition”, Biomaterials 25, 2539-2545, 2004.
[20] E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, W. Bonfield, “Magnetron co-sputtered silicon-containing hydroxyapatite thin films—an in vitro study”, Biomaterials 26, 2947-2956, 2005.
[21] V. Nelea, C. Morosanu, M. Iliescu, I.N. Mihailescu, “Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering”, Surface and Coatings Technology 173, 315-322, 2003.
[22] X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin, A. Matthews, “Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis”, Surface and Coatings Technology 149, 245-251, 2002.
[23] A. Polat, M. Makaraci, M. Usta, “Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate”, Journal of Alloys and Compounds 504, 519-526, 2010.
[24] Y. Han, S.H. Hong, K.W. Xu, “Structure and in vitro bioactivity of titania-based films by micro-arc oxidation”, Surface and Coatings Technology 168, 249-258, 2003.
[25] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, “Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy”, Surface and Coatings Technology 130, 195-206, 2000.
[26] Y. Han, K.W. Xu, “Photoexcited formation of bone apatite‐like coatings on micro‐arc oxidized titanium”, Journal of Biomedical Materials Research Part A 71, 608-614, 2004.
[27] Y. Han, J.F. Song, “Novel Mg2Zr5O12/Mg2Zr5O12-ZrO2-MgF2 Gradient Layer Coating on Magnesium Formed by Microarc Oxidation”, Journal of the American Ceramic Society 92, 1813-1816, 2009.
[28] Y. Han, Y.Y. Yan, C.G. Lu, Y.M. Zhang, K.W. Xu, “Bioactivity and osteoblast response of the micro-arc oxidized zirconia films”, Journal of Biomedical Materials Research Part A 88, 117-127, 2009.
[29] C. Wang, F. Wang, Y. Han, “Structural characteristics and outward–inward growth behavior of tantalum oxide coatings on tantalum by micro-arc oxidation”, Surface and Coatings Technology 15, 110-116, 2012.
[30] Y. Han, J.H. Zhou, L. Zhang, K.W. Xu, “A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold”, Nanotechnology 22, 275603, 2011.
[31] W.H. Song, Y.K. Jun, Y. Han, S.H. Hong, “Biomimetic apatite coatings on micro-arc oxidized titania”, Biomaterials 25, 341-3349, 2004.
[32] A.E. Inglis, “Advances in implant arthroplasty in the upper extremity, circa 1988”, Clinical & Experimental Rheumatology 7(3), 141-144, 1989.
[33] A. Ravaglioli, A. Krajewski, “Bioceramics materials”, Properties, Applications. Chapman and Hall, 81-99, 1992.
[34] K.H. Rateitschak, H.F. Wolf, “Color atlas dental medicine”, Thieme Medical Publishers, 11-24, 1995.
[35] M.S. Block, J.N. Kent, L.S. Guerra, “Implants in Dentistry”, Philadelphia: Saunders, 45-62, 1997.
[36] J.B. Park, R.S. Lakes, “Biomaterials: an introduction”, Plenum Press, 2nd ed., New York, 1992.
[37] M.S. Block, J.N. Kent, L.S. Guerra, “Implants in Dentistry”, Philadelphia: Saunders, 45-62, 1997.
[38] K. Kawhara, “Cytotoxicity of implantable metals and alloys”, Journal of the Japan Institute of Metals 31, 1033-1039, 1992.
[39] X.P. Luo, T.W. Guo, Y.G. Ou, Q. Liu, “Titanium casting into phosphate bonded investment with zirconite”, Journal of Dental 18 512-515, 2002.
[40] Y. Okazaki, Y. Ito, K. Kyo, T. Tateishi, “Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al”, Materials Science and Engineering v213, 138-147, 1996.
[41] Y. Okazaki, S. Rao, Y. Ito, T. Tateishi, “Corrosion resistance, mechanical properties, corrosion fatique strength and cytocompatibility of new Ti alloys without Al and V”, Biomaterials 19 1197-1215, 1998.
[42] L.L. Hench, E.C. Ethridge, “Biomaterials - an Interfacial approach”, Acdamic Press, New York, 18-21, 1982.
[43] L.L. Hench, “Bioceramics: from concept to clinic”, Journal of the American Ceramic Society 74(17), 1487-1510, 1991.
[44] R.H. Doremus, “Review bioceramics”, Materials Science and Engineering, 27(3), 287-297, 1992.
[45] B.M. Wroblewski, “15-21 year results of the charnley low friction arthroplasty”, Clinical Orthopaedics and Related Research 211, 30-35, 1986.
[46] D.E. Steflik, R.V. McKinney, A.L. Sisk, D.L. Koth, B.B. Singh, G.R. Parr, “Ultrastructural investigations of the bone and fibrous connective tissue interface with endosteal dental implants”, Scanning Microscopy 4(4), 1039-1047, 1990.
[47] E.C. Combe, F.J. Trevor Burke, W.H. Douglas, “Dental biomaterials”, Boston: Kluwer Academic Publishers, 476, 1999.
[48] D.F. Williams, “Biocompatibility of Clinical implant materials”, v2, CRC press, Inc. Boca Raton, Florida, 112, 1981.
[49] J. Black, “Biologic performance of tantalum”, Clinical Materials 16, 167-173, 1994.
[50] C.S. Venable, W.G. Stuck, “A general consideration of metals for buried appliances in surgery” International abstracts of surgery 76, 297-304, 1943.
[51] P. Tengvall, I. Lundstrom, “Physico-chemical considerations of titanium as a biomaterial”, Journal of Clinical Materials 9(2) 115-34, 1992.
[52] J. van Mulder, M. Pourbaix, “Tantalum. In Atlas of Electrochemical Equilibria in Aqueous Solutions, ed. M. Pourbaix”, Pergamo, Oxford, 251-255 1966.
[53] ASTM, F 560-92: Standard specification for unalloyed tantalum for surgical implant applications. In 1993 Annual Book of Standards, Vol. 13.01. American Society for Testing and Materials, Philadelphia, 92-93, 1993.
[54] G.L. Burke, “The corrosion of metals in tissues; and an introduction to tantalum” Journal of Canadian Medical Association 43, 125-128, 1940.
[55] H. Zitter, H. Plenk, “The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility”, Journal of Biomedical Materials Research 21, 881-896, 1987.
[56] G. Rizzato, S. Lo Cicero, M. Barberis, M. Torre, R. Pietra, E. Sabbioni, “Trace of metal exposure in hard metal lung disease”, Chest 90, 101-106, 1986.
[57] H.P. Tiimmier, R. Thull, “Model of the metal tissue connection of implants made of titanium and tantalum”, Amsterdam, 403-408, 1986.
[58] J.A. Nadel, W. Wolfe, P.D. Graf, “Powdered tantalum as a medium for bronchography in canine and human lungs” Investigative Radiology 3 229-238, 1968.
[59] J.A. Nadel, W.J. Dodds, H. Goldberg, P.D. Graf, “Insufflation of powdered tantalum in the esophagus. New esophagographic technique”, Investigative Radiology 4 57-62, 1969.
[60] F. P. Stitik, D. Barfelt, A.E. James, D.F. Proctor, “Tantalum tracheography in upper airway obstruction: 100 experiences in adults”, American Journal of Roentgenology 130, 35-41, 1978.
[61] C.J. Tegtmeyer, N.J. Smith, A.M. El-Mahdi, G.S. Fitz-Hugh, W.C. Constable, “The value of tantalum powder as a contrast medium in iaryngography”, Journal of Otolaryngology 4, 81-85, 1975.
[62] N. Zamel, J.H.M. Austin, P.D. Graf, H. Dedo, M.D. Jones, J.A. Nadel, “Powdered tantalum as a medium for human laryngography”, Radiolagy 94, 947-953, 1970.
[63] V.V. Grigoriev, N.A. Panichev, D.N. Nikolaeva, N.I. Slesar, “Late results of the brain surgical wound marking with tantalum powder”, Archiv Patologii 52, 55-59, 1990.
[64] T. Tindall, G.L. Odom, “The use of tantalum dust as an adjunct in the postoperative management of subdural hematomas” Journal of Neurosurgery 24, 514-519, 1966.
[65] C.J. Graf, W.B. Hamby, “Roentgenographic demonstration by tantalum powder of sinuses resulting from extraction of intervertebral disc protrusions”, American Journal of Roentgenology 53, 157-160, 1945.
[66] E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos and P. J. Marie, “The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro”, Bone 18, 517-523, 1996.
[67] K. Qiu, X. J. Zhao, C. X. Wan, C. S. Zhao and Y. W. Chen, “Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds”, Biomaterials 27, 1277-1286, 2006.
[68] P.J. Marie, M. T. Garba, M. Hott and L. Miravet, “Effect of low doses of stable strontium on bone metabolism in rats”, Mineral and Electrolyte Metabolism 11, 5-13, 1985.
[69] S.G. Dahl, P. Allain, P. J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P. D. Delmas and C. Christiansen, “Incorporation and distribution of strontium in bone”, Biomaterials 4, 446-453, 2001.
[70] P.J. Marie, P. Ammann, G. Boivin and C. Rey, “Mechanisms of action and therapeutic potential of strontium in bone”, Calcified Tissues International 69, 121-129, 2001.
[71] H. Ji, C.B. Ponton, P.M. Marquis, “Microstructural characterization of hydroxyapatite coating on titanium”, Journal of Materials Science: Materials in Medicine, 3, p.p. 283-287, 1992.
[72] B.C. Wang, E. Chang, C.Y. Yang, D. Tu, C.H. Tsai, “Characteristics and osteoconductivity of three different plasma-sprayed hydroxyapatite coatings”, Surface and Coatings Technology 58, 107-117, 1993.
[73] R. McPherson, N. Gane, “Structural characterization of plasma- sprayed hydroxyapatite coatings”, Journal of Materials Science: Materials in Medicine 6, 327-334, 1995.
[74] M. Yoshinari, Y. Ohtsuka, and T. Derand, “Thin hydroxyapatite coating produced by the ion beam dynamic mixing method”, Biomaterials 15, 529-535, 1994.
[75] P. Li, K. de Groot, “Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo”, Journal of Biomedical Materials Research 27, 1495-1500, 1993.
[76] K. Cheng, W.J. Weng, H.B. Qu, P.Y. Du, G. Shen, G.R. Han, J. Yang, J.M.F. Ferreira, “Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films”, Journal of Biomedical Materials Research Part B : Applied Biomaterials 69B, 33-37, 2004.
[77] F. Li, Q.L. Feng, F.Z. Cui, H.D. Li, H. Schubert, “A simple biomimetic method for calcium phosphate coating”, Surface and Coatings Technology 154, 88-93, 2002.
[78] M. Shirkhanzadeh, “Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes”, Journal of Materials Science: Materials in Medicine 6, 90-93, 1995.
[79] I. Zhitomirsky, L. Gal-or, “Electrophoretic deposition of hydroxyapatite”, Journal of Materials Science: Materials in Medicine 8, 213-219, 1997.
[80] H. Monma, “Electrolytic depositions of calcium phosphates on substrate”, Journal of Materials Science 29, 949-953, 1994.
[81] C.C. Chen, J.H. Chen, C.G. Chao, W.C. Say, “Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing”, Journal of Materials Science 40, 4053-4059, 2005.
[82] X. Quan, S.G. Yang, X.L. Ruan, H.M. Zhao, “Preparation of titania nanotubes and their environmental applications as electrode”, Environmental Science and Technology 39, 3770-3775, 2005.
[83] W.J. Lee, M. Alhoshan, and W.H. Smyrl, “Titanium dioxide nanotube arrays fabricated by anodizing processes”, Journal of the Electrochemical Society 153, B499-B505, 2006.
[84] X. Nie, A. Leyland, A. Matthews, “Deposition of layered bioceramic hydroxyapatite-TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis”, Surface and Coatings Technology 125, 407-414, 2000.
[85] Y. Tanaka, “Titanium-oxide interface structures formed by degassing and anodization processes”, Journal of Materials Science 40, 3081-3090, 2005.
[86] D. Krupa, J. Baszkiewicz, J.A. Kozubowski, J. Mizera, A. Barcz, J.W. Sobczak, A. Bilinski, B. Rajchel, “Corrosion resistance and bioactivity of titanium after surface treatment by three different methods: ion implantation, alkaline treatment and anodic oxidation”, Analytical and Bioanalytical Chemistry 381, 617-625, 2005.
[87] T.S.N. Sankara Narayanan, M. H. Lee, ”Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges” Progress in Materials Science 60, 1-71, 2014
[88] J.L. Zhao, X.H. Wang, R.Z. Chen, L.T. Li, “Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid State Communications 134, 705-710, 2005.
[89] Y.K. Lai, L. Sun, C. Chen, C.G. Nie, J. Zuo, C.J. Lin, “Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate”, Applied Surface Science 252, 1101-1106, 2005.
[90] H.M. Kim, B.C. Yang, M. Uchida, X.D. Zhang, T. Kokubo, “Preparation of bioactive titanium metal via anodic oxidation treatment”, Biomaterials 25, 1003-1010, 2004.
[91] E. Sandrini, C. Giordano, V. Busini, E. Signorelli, A. Cigada, “Apatite formation and cellular response of a novel bioactive titanium”, Journal of Materials Science: Materials in Medicine 18, 1225-1237, 2007.
[92] L.H. Li et al., “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation”, Biomaterials 25, 2867-2875, 2004.
[93] S. Stojadinović, J. Jovović, M. Petković, R. Vasilić, N. Konjević, “Spectroscopic and real-time imaging investigation of tantalum plasma electrolytic oxidation (PEO)”, Surface and Coatings Technology 205, 5406-5413, 2011.
[94] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology 122, 73-93, 1999.
[95] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation”, Biomaterials 25, 2867-2875, 2004.
[96] J.Z. Chen, Y.L. Shi, L. Wang, F.Y. Yan, F.Q. Zhang, “Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation”, Materials Letters 60, 2538-2543, 2006.
[97] F.Y. Jin, H.H. Tong, L.R. Shen, K. Wang, P.K. Chu, “Micro-structural and dielectric properties of porous TiO2 films synthesized on titanium alloys by micro-arc discharge oxidization”, Materials Chemistry and Physics 100, 31-33, 2006.
[98] J.P. Schreckenbach, G. Marx, F. Schlottig, M. Textor, N.D. Spencer, “Characterization of anodic spark-converted titanium surfaces for biomedical applications”, Journal of Materials Science: Materials in Medicine 10, 453-457, 1999.
[99] Z.W. Zhao, S.M. Wen, “Direct preparation of CaTi4(PO4)6 coatings on the surface of titanium substrate by micro arc oxidation”, Journal of Materials Science: Materials in Medicine 18, 2275-2281, 2007.
[100] P. Huang, K.W. Xu, Y. Han, “Formation mechanism of biomedical apatite coatings on porous titania layer”, Journal of Materials Science: Materials in Medicine 18, 457-463, 2007.
[101] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation”, Biomaterials 25, 2867-2875, 2004.
[102] J. Lawrence, L. Hao, H.R. Chew, “On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy”, Surface and Coatings Technology 200, 5581-5589, 2006.
[103] Y.M. Zhang, P. Bataillon-Linez, P. Huang, Y.M. Zhao, Y. Han, M. Traisnel, K. W. Xu, H. F. Hildebrand, “Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior”, Journal of Biomedical Materials Research Part A 68A, 383-391, 2004.
[104] X.L. Zhu, J. Chen, L. Scheideler, R. Reichl, J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses”, Biomaterials 25, 4087-4103, 2004.
校內:2024-12-31公開