簡易檢索 / 詳目顯示

研究生: 李友吉
Li, Yu-Chi
論文名稱: 利用微弧陽極氧化法製備具生物活性多孔含鍶鍍層於鉭基材之研究
Porous Coatings Incorporating Strontium on Biomedical Tantalum Through Micro-Arc Oxidation
指導教授: 王清正
Wang, Ching-Cheng
共同指導教授: 李澤民
Lee, Tzer-Min
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 106
中文關鍵詞: 微弧陽極氧化Ta2O5
外文關鍵詞: Micro-arc oxidation, Tantalum, Ta2O5, Strontium
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用微弧氧化 (Micro-arc oxidation, MAO)法,利用不同鍶濃度之電解液通入高電壓,於材料表面形成微弧火花進而形成氧化層,將生醫用鉭基材 (ASTM F-560)上披覆上一層含有鍶鈣磷成分之氧化鉭鍍層,並在表面上產生分布均勻的孔洞。目的是為了探討材料表面不同鍶濃度對MC3T3-E1細胞活性之影響。X-ray繞射儀與EDS成分分析儀鑑定披覆鍍層之相組成及成分,LV-SEM觀察經MAO處理後的表面形態與厚度。結果發現,鍍層主要成分為Ta2O5,且在氧化層當中含有鈣磷鍶三種元素。當電壓為200 V以下時,其表面為陽極氧化反應,無微弧氧化之火花產生;而在電壓200 V以上時,表面開始產生微弧氧化之火花現象,且表面反應隨著電壓之提升而增大。經由不同鍶濃度之電解液反應過後之試片表面,所形成之厚度並無明顯差異,平均落在5.03~5.39 μm之間。親水性方面,經MAO處理後的試片,與未處理之材料相比皆有非常良好的親水性。細胞相容性方面,將MC3T3-E1細胞分別培養於基材上,探討其生物活性反應。利用細胞增生測試 (Methylthiazoletetrazolium assay, MTT assay),將細胞培養於試片1、3與7天,探討其增生能力,結果顯示細胞在鉭基材上與鈦基材相比,有較好之增生能力,生長最為迅速。另外測試細胞分生能力 (Alkaline phosphate activity assay, ALP assay),當改質過後之鉭片其鍶濃度為5 %時,對較其他試片有最好的分生能力。LV-SEM觀察細胞培養1、3與24小時的細胞形態,發現細胞在改質過後的試片貼附能力最好,表示經由微弧氧化改質過後之試片表面結構有較好的細胞親和性。上述結果顯示鍶元素濃度的不同的確會影響細胞的形態與反應,表面鍶濃度含量低的試片有較好的細胞反應。

    Containing Sr-Ca-P (Strontium Calcium phosphorus) ceramics layer were bioactive materials. We used micro-arc oxidation (MAO) to manufacture Ta2O5 with Sr-Ca-P porous coatings on tantalum substrates. The aim of this study was to fabricate porous Sr-Ca-P-containing coatings on the tantalum surface using the MAO technique and evaluate the coatings topography, phase, chemical composition and cell response. We used different instruments to investigate the coatings, including X-ray diffraction, FE-SEM and EDS. The micro-arc oxidation were not begin to reaction at 200 V and begin to reaction at 300 V. The results showed that the thickness of Ta2O5 films was the same between different concentration of strontium. The Sr-Ca-P films were deposited about 5.03~5.39 μm. By contact angle analysis, all specimens showed hydrophilic property. In addition, coatings were evaluated with MC3T3-E1 which incubated on samples. Results in the cell proliferation, the pure tantalum exhibited the best biocompatibility. Sample Ta-5Sr exhibited more ALP activity than other samples. In the cell morphology, MC3T3-E1 had the faster rate accreted on sample of MAO modification. In conclusion, it was showed that the strontium of low concentration affected cell behaviors.

    中文摘要.....I Abstract.....II Extended Abstract.....III 誌謝.....VII 目錄.....VIII 表目錄.....XI 圖目錄.....XII 第一章 緒論.....1 1.1 研究背景.....1 1.2 研究目的.....3 第二章 文獻回顧.....4 2.1 生醫材料簡介.....4 2.1.1 生醫材料定義.....5 2.1.2 生醫材料特性.....5 2.1.3 生醫材料分類.....6 2.1.4 牙科生醫材料之需求.....8 2.2 鉭金屬於生醫應用簡介.....9 2.3 鍶元素介紹.....10 2.4 披覆生物活性陶瓷製程技術.....11 2.4.1 電漿熔射法.....12 2.4.2 濺鍍披覆法.....12 2.4.3 溶膠-凝膠法.....13 2.4.4 仿生浸泡法.....13 2.4.5 電化學沉積法.....13 2.4.6 陽極化處理法.....14 第三章 材料與實驗方法.....16 3.1 研究方法.....16 3.1.1 實驗流程.....16 3.1.2 實驗材料.....16 3.2 試片前處理.....19 3.3 微弧氧化陽極處理裝置.....19 3.4 基本性質測試.....20 3.4.1 SEM、EDS表面分析.....20 3.4.2 XRD相分析.....20 3.4.3 ICP-OES分析.....21 3.4.4 橫截面分析.....21 3.4.5 微硬度測試.....21 3.4.6 粗糙度測試.....22 3.4.7 表面孔徑分析.....22 3.4.8 親疏水性測試.....23 3.4.9 活性測試.....23 3.5 體外實驗.....24 3.5.1 滅菌處理.....24 3.5.2 細胞培養.....24 3.5.3 細胞增生活性測試.....25 3.5.4 細胞分化活性測試.....26 3.5.5 細胞礦化活性測試.....27 3.5.6 細胞表面形態觀察.....28 3.5.7 細胞免疫螢光染色.....29 3.5.8 統計分析.....31 第四章 結果與討論.....32 4.1 基本性質探討.....32 4.1.1 SEM/EDS表面分析結果.....32 4.1.2 XRD相分析結果.....34 4.1.3 ICP-OES元素分析.....35 4.1.4 橫截面分析結果.....36 4.1.5 微硬度測試結果.....36 4.1.6 粗糙度測試結果.....37 4.1.7 表面孔徑觀察結果.....37 4.1.8 親疏水性測試結果.....38 4.1.9 活性測試結果.....38 4.2體外實驗.....40 4.2.1 細胞增生活性分析結果.....41 4.2.2 細胞分化活性分析結果.....41 4.2.3 細胞礦化活性分析結果.....42 4.2.4 細胞表面形態觀察結果.....42 4.2.4 細胞免疫螢光染色結果.....44 第五章 結論.....45 參考文獻.....46 表目錄 表2.1 鉭金屬之物理性質.....56 表3.1 ASTM F-560醫療級純鉭成分表.....57 表3.2 人工模擬體液 (SBF)之成分 (ISO 23317).....57 表4.1 各種不同Sr濃度之電解液配方.....58 表4.2 各種不同Sr濃度試片EDS面分析.....59 表4.3 ICP-OES之定性分析結果.....60 表4.4 0 % Sr試片浸泡人工模擬體液後試片Ca及P成分EDS面分析.....61 表4.5 1 % Sr試片浸泡人工模擬體液後試片Ca及P成分EDS面分析.....61 表4.6 5 % Sr試片浸泡人工模擬體液後試片Ca及P成分EDS面分析.....62 表4.7 10 % Sr試片浸泡人工模擬體液後試片Ca及P成分EDS面分析.....62 表4.8 25 % Sr試片浸泡人工模擬體液後試片Ca及P成分EDS面分析.....63 表4.9 細胞增生 (MTT)一天之SPSS統計分析表.....64 表4.10 細胞增生 (MTT)三天之SPSS統計分析表.....65 表4.11 細胞增生 (MTT)七天之SPSS統計分析表.....66 表4.12 細胞分化 (ALP)十天之SPSS統計分析表.....67 圖目錄 圖1.1 生醫材料於人體之應用.....68 圖2.1 金屬元素的生物相容性.....69 圖2.2 純金屬、不銹鋼及Co-Cr合金之生物相容性與耐蝕性的比較.....70 圖2.3 鍶元素於細胞內之機制.....71 圖2.4 電漿噴射示意圖.....71 圖2.5 電解沉積示意圖.....72 圖2.6 表面均勻且有顏色變化之微弧氧化表面.....73 圖2.7 MC3T3-E1細胞貼附(a)未改質之鈦基材 (b)微弧氧化後之鈦基材.....73 圖2.8 鉭金屬微弧陽極氧化即時圖 (a) 10 s; (b) 20 s; (c) 1 min; (d) 3 min; (e) 5 min; (f) 15 min; (g) 30 min; (h) 45 min.....74 圖2.9 微弧氧化後鍍層與基材之橫截面.....75 圖3.1 實驗流程圖.....76 圖3.2 處理裝置示意圖.....77 圖3.3 試片硬度值取樣示意圖.....77 圖4.1 微弧陽極氧化設備實體圖.....78 圖4.2 微弧陽極氧化電流與時間關係圖.....79 圖4.3 磷酸二氫鈉、醋酸鈣電解液之微弧陽極氧化一分鐘後巨觀圖 (a)100 V;(b)200 V;(c)300 V;(d)400 V;(e)500 V.....80 圖4.4 磷酸二氫鈉、醋酸鈣電解液之微弧陽極氧化後SEM圖:(A,a)100 V/1 min;(B,b)200 V/1 min;(C,c)300 V/1 min;(D,d)400 V/1 min;(E,e)500 V/1 min;(A-E x500;a-e 2000x).....80 圖4.5 磷酸二氫鈉、醋酸鈣及醋酸鍶電解液之微弧陽極氧化後巨觀圖(a) 0 % Sr;(b) 1 % Sr;(c) 5 % Sr;(d) 10 % Sr;(e) 25 % Sr.....81 圖4.6 磷酸二氫鈉、醋酸鈣及醋酸鍶電解液之微弧陽極氧化後SEM圖: (A,a) 0 % Sr;(B,b) 1 % Sr;(C,c) 5 % Sr;(D,d) 10 % Sr;(E,e) 25 % Sr;(A-E x500;a-e 2000x).....82 圖4.7 各種不同Sr濃度試片表面EDS面分析: (a) 0 % Sr;(b) 1 % Sr;(c) 5 % Sr;(d) 10 % Sr;(e) 25 % Sr.....83 圖4.8 各種不同Sr濃度試片之取代率 (at %).....83 圖4.9 純鉭及磷酸二氫鈉、醋酸鈣電解液之微弧陽極氧化後TF-XRD圖.....84 圖4.10 純鉭及各種不同Sr濃度電解液之微弧陽極氧化後TF-XRD圖.....84 圖4.11 各種不同Sr濃度試片之橫截面SEM圖: (a) 0 % Sr;(b) 1 % Sr;(c) 5 % Sr;(d) 10 % Sr;(e) 25 % Sr (5000x).....85 圖4.12 各種不同Sr濃度試片表面之微硬度.....86 圖4.13 各種不同Sr濃度試片表面之粗糙度.....87 圖4.14 各種不同Sr濃度試片表面3D圖:(a) Ti;(b) Ta;(c) 0 % Sr;(d) 1 % Sr;(e) 5 % Sr;(f) 10 % Sr;(g) 25 % Sr (50x).....88 圖4.15 微弧陽極氧化後表面孔徑分析統計柱狀圖.....89 圖4.16 液滴與試片親疏水性測試巨觀圖:(a) Ti;(b) Ta;(c) 0 % Sr;(d) 1 % Sr;(e) 5 % Sr;(f) 10 % Sr;(g) 25 % Sr (50x).....90 圖4.17 各種不同Sr濃度試片表面之接觸角.....91 圖4.18 不同Sr濃度試片浸泡SBF 0天之SEM圖: (A,a) Ti;(B,b) Ta;(C,c) 0 % Sr;(D,d) 1 % Sr;(E,e) 5 % Sr;(F,f) 10 % Sr;(G,g) 25 % Sr;(A-G 200x;a-g 1000x).....92 圖4.19 不同Sr濃度試片浸泡SBF 1天之SEM圖: (A,a) Ti;(B,b) Ta;(C,c) 0 % Sr;(D,d) 1 % Sr;(E,e) 5 % Sr;(F,f) 10 % Sr;(G,g) 25 % Sr;(A-G 200x;a-g 1000x).....93 圖4.20 不同Sr濃度試片浸泡SBF 3天之SEM圖: (A,a) Ti;(B,b) Ta;(C,c) 0 % Sr;(D,d) 1 % Sr;(E,e) 5 % Sr;(F,f) 10 % Sr;(G,g) 25 % Sr;(A-G 200x;a-g 1000x).....94 圖4.21 不同Sr濃度試片浸泡SBF 7天之SEM圖: (A,a) Ti;(B,b) Ta;(C,c) 0 % Sr;(D,d) 1 % Sr;(E,e) 5 % Sr;(F,f) 10 % Sr;(G,g) 25 % Sr;(A-G 200x;a-g 1000x).....95 圖4.22 不同Sr濃度試片浸泡SBF 21天之SEM圖: (A,a) Ti;(B,b) Ta;(C,c) 0 % Sr;(D,d) 1 % Sr;(E,e) 5 % Sr;(F,f) 10 % Sr;(G,g) 25 % Sr;(A-G 200x;a-g 1000x).....96 圖4.23 不同Sr濃度試片浸泡SBF 0、1、3及7天後之離子釋放圖.....97 圖4.24 浸泡人工模擬體液7天後之試片TF-XRD圖.....98 圖4.25 Sr濃度5 %試片浸泡SBF 0、1、3、7及21天之TF-XRD圖.....98 圖4.26 MC3T3-E1細胞培養於不同Sr濃度試片1、3及7天之細胞增生圖.....99 圖4.27 MC3T3-E1細胞培養於不同Sr濃度試片10天之細胞分化圖.....100 圖4.28 MC3T3-E1細胞培養於不同Sr濃度試片21天之細胞礦化圖: (A,a) Ti;(B,b) Ta;(C,c) 0 % Sr;(D,d) 1 % Sr;(E,e) 5 % Sr;(F,f) 10 % Sr;(G,g) 25 % Sr;(A-G 沒細胞40x;a-g 有細胞40x).....101 圖4.29 MC3T3-E1細胞培養於不同Sr濃度試片1小時之細胞型態圖: (a) Ti;(b) Ta;(c) 0 % Sr;(d) 1 % Sr;(e) 5 % Sr;(f) 10 % Sr;(g) 25 % Sr (2000x).....102 圖4.30 MC3T3-E1細胞培養於不同Sr濃度試片3小時之細胞型態圖: (a) Ti;(b) Ta;(c) 0 % Sr;(d) 1 % Sr;(e) 5 % Sr;(f) 10 % Sr;(g) 25 % Sr (2000x).....103 圖4.31 MC3T3-E1細胞培養於不同Sr濃度試片24小時之細胞型態圖: (a) Ti;(b) Ta;(c) 0 % Sr;(d) 1 % Sr;(e) 5 % Sr;(f) 10 % Sr;(g) 25 % Sr (2000x).....104 圖4.32 細胞生長型態示意圖: (a) 細胞呈現圓球狀並且沒有伸出觸角;(b)與(c) 細胞開始往側向延伸並且逐漸攤開;(d) 細胞完全攤開並且開始往周圍生長.....105 圖4.33 MC3T3-E1細胞培養於不同Sr濃度試片3小時之免疫螢光圖: (a) Ti;(b) Ta;(c) 0 % Sr;(d) 1 % Sr;(e) 5 % Sr;(f) 10 % Sr;(g) 25 % Sr (40x).....106 圖4.34 MC3T3-E1細胞培養於不同Sr濃度試片24小時之免疫螢光圖: (a) Ti;(b) Ta;(c) 0 % Sr;(d) 1 % Sr;(e) 5 % Sr;(f) 10 % Sr;(g) 25 % Sr (40x).....107

    [1] K. Wang, “The use of titanium for medical applications in the USA”, Materials Science and Engineering A 213, 134-137, 1996.
    [2] 葉哲政,“生醫用金屬產業全球布局與競爭策略”,ITIS 經濟部產業報告,2006。
    [3] S.M. Cardonne, P. kumar, C.A. Michaluk, H.D. Schwartz, “Tantalum and its Alloys”, International Journal of Refractory Metals & Hard Materials 13, 187-194, 1995.
    [4] J. Black, “Biologic performance of tantalum”, Clinical Materials 16, 167-173, 1994.
    [5] M.D. Bermudez, F.J. Carrion, G. Martinez-Nicolas, R. Lopez, “Erosion–corrosion of stainless steels, titanium, tantalum and zirconium”, Wear 258, 693-700, 2005.
    [6] H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H.M. Kim, T. Kokubo, “Bonding of Alkali and Heat-Treated Tantalum Implants to Bone”, Journal of Biomedical Materials Research 53, 28-35, 2000.
    [7] K.J. Welldon, G.J. Atkins, D.W. Howie, D.M. Findlay, “Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype”, Journal of Biomedical Materials Research Part A 84, 691-701, 2008.
    [8] D.M. Findlay, K. Welldon, G.J. Atkins, D.W. Howie, A.C.W. Zannettino, D. Bobyn, “The proliferation and phenotypic expression of human osteoblasts on tantalum metal”, Biomaterials 25, 2215-2227, 2004.
    [9] T.A. Schildhauer, B. Robie, G. Muhr, M. Koller, “Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials”, Journal of Orthopaedic Trauma 20, 476-484, 2006.
    [10] T.A. Schildhauer, E. Peter, G. Muhr, M. Koller, “Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials”, Journal of Biomedical Materials Research Part A 88, 332-341, 2009.
    [11] B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, “Experimental and clinical performance of porous tantalum in orthopedic surgery”, Biomaterials 27, 4671-4681, 2006.
    [12] M. Fini, A. Cigada, G. Rondelli, R. Chiesa, R. Giardino, G. Giavaresi, N.N. Aldini, P. Torricelli, B. Vicentini, “In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium”, Biomaterials 20, 1587-1594, 1999.
    [13] J.M. Choi, H.E. Kim, I.S. Lee, “Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate”, Biomaterials 21, 469-473, 2000.
    [14] B.H. Zhao, I.S. Lee, W. Bai, F.Z. Cui, H.L. Feng, “Improvement of fibroblast adherence to titanium surface by calcium phosphate coating formed with IBAD”, Surface and Coatings Technology 193, 366-371, 2005.
    [15] I.C. Lavos-Valereto, S. Wolynec, M.C.Z. Deboni, B. Konig Jr., “In vitro and in vivo biocompatibility testing of Ti‐6Al‐7Nb alloy with and without plasma‐sprayed hydroxyapatite coating”, Journal of Biomedical Materials Research 58, 727-733, 2001.
    [16] C. Massaro, M.A. Baker, F. Cosentino, P.A. Ramires, S. Klose, E. Milella, “Surface and biological evaluation of hydroxyapatite‐based coatings on titanium deposited by different techniques”, Journal of Biomedical Materials Research 58, 651-657, 2001.
    [17] J. Ma, C.H. Liang, L.B. Kong, C. Wang, “Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate”, Journal of Materials Science: Materials in Medicine 14, 797-801, 2003.
    [18] A. Bigi, B. Bracci, F. Cuisinier, R. Elkaim, M. Fini, I. Mayer, I.N. Mihailescu, G. Socol, L. Sturba, P. Torricelli, “Human osteoblast response to pulsed laser deposited calcium phosphate coatings”, Biomaterials 26, 2381-2389, 2005.
    [19] G. Socol, P. Torricelli, B. Bracci, M. Iliescu, F. Miroiu, A. Bigi, J. Werckmann, I.N. Mihailescu, “Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition”, Biomaterials 25, 2539-2545, 2004.
    [20] E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, W. Bonfield, “Magnetron co-sputtered silicon-containing hydroxyapatite thin films—an in vitro study”, Biomaterials 26, 2947-2956, 2005.
    [21] V. Nelea, C. Morosanu, M. Iliescu, I.N. Mihailescu, “Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering”, Surface and Coatings Technology 173, 315-322, 2003.
    [22] X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin, A. Matthews, “Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis”, Surface and Coatings Technology 149, 245-251, 2002.
    [23] A. Polat, M. Makaraci, M. Usta, “Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate”, Journal of Alloys and Compounds 504, 519-526, 2010.
    [24] Y. Han, S.H. Hong, K.W. Xu, “Structure and in vitro bioactivity of titania-based films by micro-arc oxidation”, Surface and Coatings Technology 168, 249-258, 2003.
    [25] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, “Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy”, Surface and Coatings Technology 130, 195-206, 2000.
    [26] Y. Han, K.W. Xu, “Photoexcited formation of bone apatite‐like coatings on micro‐arc oxidized titanium”, Journal of Biomedical Materials Research Part A 71, 608-614, 2004.
    [27] Y. Han, J.F. Song, “Novel Mg2Zr5O12/Mg2Zr5O12-ZrO2-MgF2 Gradient Layer Coating on Magnesium Formed by Microarc Oxidation”, Journal of the American Ceramic Society 92, 1813-1816, 2009.
    [28] Y. Han, Y.Y. Yan, C.G. Lu, Y.M. Zhang, K.W. Xu, “Bioactivity and osteoblast response of the micro-arc oxidized zirconia films”, Journal of Biomedical Materials Research Part A 88, 117-127, 2009.
    [29] C. Wang, F. Wang, Y. Han, “Structural characteristics and outward–inward growth behavior of tantalum oxide coatings on tantalum by micro-arc oxidation”, Surface and Coatings Technology 15, 110-116, 2012.
    [30] Y. Han, J.H. Zhou, L. Zhang, K.W. Xu, “A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold”, Nanotechnology 22, 275603, 2011.
    [31] W.H. Song, Y.K. Jun, Y. Han, S.H. Hong, “Biomimetic apatite coatings on micro-arc oxidized titania”, Biomaterials 25, 341-3349, 2004.
    [32] A.E. Inglis, “Advances in implant arthroplasty in the upper extremity, circa 1988”, Clinical & Experimental Rheumatology 7(3), 141-144, 1989.
    [33] A. Ravaglioli, A. Krajewski, “Bioceramics materials”, Properties, Applications. Chapman and Hall, 81-99, 1992.
    [34] K.H. Rateitschak, H.F. Wolf, “Color atlas dental medicine”, Thieme Medical Publishers, 11-24, 1995.
    [35] M.S. Block, J.N. Kent, L.S. Guerra, “Implants in Dentistry”, Philadelphia: Saunders, 45-62, 1997.
    [36] J.B. Park, R.S. Lakes, “Biomaterials: an introduction”, Plenum Press, 2nd ed., New York, 1992.
    [37] M.S. Block, J.N. Kent, L.S. Guerra, “Implants in Dentistry”, Philadelphia: Saunders, 45-62, 1997.
    [38] K. Kawhara, “Cytotoxicity of implantable metals and alloys”, Journal of the Japan Institute of Metals 31, 1033-1039, 1992.
    [39] X.P. Luo, T.W. Guo, Y.G. Ou, Q. Liu, “Titanium casting into phosphate bonded investment with zirconite”, Journal of Dental 18 512-515, 2002.
    [40] Y. Okazaki, Y. Ito, K. Kyo, T. Tateishi, “Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al”, Materials Science and Engineering v213, 138-147, 1996.
    [41] Y. Okazaki, S. Rao, Y. Ito, T. Tateishi, “Corrosion resistance, mechanical properties, corrosion fatique strength and cytocompatibility of new Ti alloys without Al and V”, Biomaterials 19 1197-1215, 1998.
    [42] L.L. Hench, E.C. Ethridge, “Biomaterials - an Interfacial approach”, Acdamic Press, New York, 18-21, 1982.
    [43] L.L. Hench, “Bioceramics: from concept to clinic”, Journal of the American Ceramic Society 74(17), 1487-1510, 1991.
    [44] R.H. Doremus, “Review bioceramics”, Materials Science and Engineering, 27(3), 287-297, 1992.
    [45] B.M. Wroblewski, “15-21 year results of the charnley low friction arthroplasty”, Clinical Orthopaedics and Related Research 211, 30-35, 1986.
    [46] D.E. Steflik, R.V. McKinney, A.L. Sisk, D.L. Koth, B.B. Singh, G.R. Parr, “Ultrastructural investigations of the bone and fibrous connective tissue interface with endosteal dental implants”, Scanning Microscopy 4(4), 1039-1047, 1990.
    [47] E.C. Combe, F.J. Trevor Burke, W.H. Douglas, “Dental biomaterials”, Boston: Kluwer Academic Publishers, 476, 1999.
    [48] D.F. Williams, “Biocompatibility of Clinical implant materials”, v2, CRC press, Inc. Boca Raton, Florida, 112, 1981.
    [49] J. Black, “Biologic performance of tantalum”, Clinical Materials 16, 167-173, 1994.
    [50] C.S. Venable, W.G. Stuck, “A general consideration of metals for buried appliances in surgery” International abstracts of surgery 76, 297-304, 1943.
    [51] P. Tengvall, I. Lundstrom, “Physico-chemical considerations of titanium as a biomaterial”, Journal of Clinical Materials 9(2) 115-34, 1992.
    [52] J. van Mulder, M. Pourbaix, “Tantalum. In Atlas of Electrochemical Equilibria in Aqueous Solutions, ed. M. Pourbaix”, Pergamo, Oxford, 251-255 1966.
    [53] ASTM, F 560-92: Standard specification for unalloyed tantalum for surgical implant applications. In 1993 Annual Book of Standards, Vol. 13.01. American Society for Testing and Materials, Philadelphia, 92-93, 1993.
    [54] G.L. Burke, “The corrosion of metals in tissues; and an introduction to tantalum” Journal of Canadian Medical Association 43, 125-128, 1940.
    [55] H. Zitter, H. Plenk, “The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility”, Journal of Biomedical Materials Research 21, 881-896, 1987.
    [56] G. Rizzato, S. Lo Cicero, M. Barberis, M. Torre, R. Pietra, E. Sabbioni, “Trace of metal exposure in hard metal lung disease”, Chest 90, 101-106, 1986.
    [57] H.P. Tiimmier, R. Thull, “Model of the metal tissue connection of implants made of titanium and tantalum”, Amsterdam, 403-408, 1986.
    [58] J.A. Nadel, W. Wolfe, P.D. Graf, “Powdered tantalum as a medium for bronchography in canine and human lungs” Investigative Radiology 3 229-238, 1968.
    [59] J.A. Nadel, W.J. Dodds, H. Goldberg, P.D. Graf, “Insufflation of powdered tantalum in the esophagus. New esophagographic technique”, Investigative Radiology 4 57-62, 1969.
    [60] F. P. Stitik, D. Barfelt, A.E. James, D.F. Proctor, “Tantalum tracheography in upper airway obstruction: 100 experiences in adults”, American Journal of Roentgenology 130, 35-41, 1978.
    [61] C.J. Tegtmeyer, N.J. Smith, A.M. El-Mahdi, G.S. Fitz-Hugh, W.C. Constable, “The value of tantalum powder as a contrast medium in iaryngography”, Journal of Otolaryngology 4, 81-85, 1975.
    [62] N. Zamel, J.H.M. Austin, P.D. Graf, H. Dedo, M.D. Jones, J.A. Nadel, “Powdered tantalum as a medium for human laryngography”, Radiolagy 94, 947-953, 1970.
    [63] V.V. Grigoriev, N.A. Panichev, D.N. Nikolaeva, N.I. Slesar, “Late results of the brain surgical wound marking with tantalum powder”, Archiv Patologii 52, 55-59, 1990.
    [64] T. Tindall, G.L. Odom, “The use of tantalum dust as an adjunct in the postoperative management of subdural hematomas” Journal of Neurosurgery 24, 514-519, 1966.
    [65] C.J. Graf, W.B. Hamby, “Roentgenographic demonstration by tantalum powder of sinuses resulting from extraction of intervertebral disc protrusions”, American Journal of Roentgenology 53, 157-160, 1945.
    [66] E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos and P. J. Marie, “The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro”, Bone 18, 517-523, 1996.
    [67] K. Qiu, X. J. Zhao, C. X. Wan, C. S. Zhao and Y. W. Chen, “Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds”, Biomaterials 27, 1277-1286, 2006.
    [68] P.J. Marie, M. T. Garba, M. Hott and L. Miravet, “Effect of low doses of stable strontium on bone metabolism in rats”, Mineral and Electrolyte Metabolism 11, 5-13, 1985.
    [69] S.G. Dahl, P. Allain, P. J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P. D. Delmas and C. Christiansen, “Incorporation and distribution of strontium in bone”, Biomaterials 4, 446-453, 2001.
    [70] P.J. Marie, P. Ammann, G. Boivin and C. Rey, “Mechanisms of action and therapeutic potential of strontium in bone”, Calcified Tissues International 69, 121-129, 2001.
    [71] H. Ji, C.B. Ponton, P.M. Marquis, “Microstructural characterization of hydroxyapatite coating on titanium”, Journal of Materials Science: Materials in Medicine, 3, p.p. 283-287, 1992.
    [72] B.C. Wang, E. Chang, C.Y. Yang, D. Tu, C.H. Tsai, “Characteristics and osteoconductivity of three different plasma-sprayed hydroxyapatite coatings”, Surface and Coatings Technology 58, 107-117, 1993.
    [73] R. McPherson, N. Gane, “Structural characterization of plasma- sprayed hydroxyapatite coatings”, Journal of Materials Science: Materials in Medicine 6, 327-334, 1995.
    [74] M. Yoshinari, Y. Ohtsuka, and T. Derand, “Thin hydroxyapatite coating produced by the ion beam dynamic mixing method”, Biomaterials 15, 529-535, 1994.
    [75] P. Li, K. de Groot, “Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo”, Journal of Biomedical Materials Research 27, 1495-1500, 1993.
    [76] K. Cheng, W.J. Weng, H.B. Qu, P.Y. Du, G. Shen, G.R. Han, J. Yang, J.M.F. Ferreira, “Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films”, Journal of Biomedical Materials Research Part B : Applied Biomaterials 69B, 33-37, 2004.
    [77] F. Li, Q.L. Feng, F.Z. Cui, H.D. Li, H. Schubert, “A simple biomimetic method for calcium phosphate coating”, Surface and Coatings Technology 154, 88-93, 2002.
    [78] M. Shirkhanzadeh, “Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes”, Journal of Materials Science: Materials in Medicine 6, 90-93, 1995.
    [79] I. Zhitomirsky, L. Gal-or, “Electrophoretic deposition of hydroxyapatite”, Journal of Materials Science: Materials in Medicine 8, 213-219, 1997.
    [80] H. Monma, “Electrolytic depositions of calcium phosphates on substrate”, Journal of Materials Science 29, 949-953, 1994.
    [81] C.C. Chen, J.H. Chen, C.G. Chao, W.C. Say, “Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing”, Journal of Materials Science 40, 4053-4059, 2005.
    [82] X. Quan, S.G. Yang, X.L. Ruan, H.M. Zhao, “Preparation of titania nanotubes and their environmental applications as electrode”, Environmental Science and Technology 39, 3770-3775, 2005.
    [83] W.J. Lee, M. Alhoshan, and W.H. Smyrl, “Titanium dioxide nanotube arrays fabricated by anodizing processes”, Journal of the Electrochemical Society 153, B499-B505, 2006.
    [84] X. Nie, A. Leyland, A. Matthews, “Deposition of layered bioceramic hydroxyapatite-TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis”, Surface and Coatings Technology 125, 407-414, 2000.
    [85] Y. Tanaka, “Titanium-oxide interface structures formed by degassing and anodization processes”, Journal of Materials Science 40, 3081-3090, 2005.
    [86] D. Krupa, J. Baszkiewicz, J.A. Kozubowski, J. Mizera, A. Barcz, J.W. Sobczak, A. Bilinski, B. Rajchel, “Corrosion resistance and bioactivity of titanium after surface treatment by three different methods: ion implantation, alkaline treatment and anodic oxidation”, Analytical and Bioanalytical Chemistry 381, 617-625, 2005.
    [87] T.S.N. Sankara Narayanan, M. H. Lee, ”Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges” Progress in Materials Science 60, 1-71, 2014
    [88] J.L. Zhao, X.H. Wang, R.Z. Chen, L.T. Li, “Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid State Communications 134, 705-710, 2005.
    [89] Y.K. Lai, L. Sun, C. Chen, C.G. Nie, J. Zuo, C.J. Lin, “Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate”, Applied Surface Science 252, 1101-1106, 2005.
    [90] H.M. Kim, B.C. Yang, M. Uchida, X.D. Zhang, T. Kokubo, “Preparation of bioactive titanium metal via anodic oxidation treatment”, Biomaterials 25, 1003-1010, 2004.
    [91] E. Sandrini, C. Giordano, V. Busini, E. Signorelli, A. Cigada, “Apatite formation and cellular response of a novel bioactive titanium”, Journal of Materials Science: Materials in Medicine 18, 1225-1237, 2007.
    [92] L.H. Li et al., “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation”, Biomaterials 25, 2867-2875, 2004.
    [93] S. Stojadinović, J. Jovović, M. Petković, R. Vasilić, N. Konjević, “Spectroscopic and real-time imaging investigation of tantalum plasma electrolytic oxidation (PEO)”, Surface and Coatings Technology 205, 5406-5413, 2011.
    [94] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology 122, 73-93, 1999.
    [95] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation”, Biomaterials 25, 2867-2875, 2004.
    [96] J.Z. Chen, Y.L. Shi, L. Wang, F.Y. Yan, F.Q. Zhang, “Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation”, Materials Letters 60, 2538-2543, 2006.
    [97] F.Y. Jin, H.H. Tong, L.R. Shen, K. Wang, P.K. Chu, “Micro-structural and dielectric properties of porous TiO2 films synthesized on titanium alloys by micro-arc discharge oxidization”, Materials Chemistry and Physics 100, 31-33, 2006.
    [98] J.P. Schreckenbach, G. Marx, F. Schlottig, M. Textor, N.D. Spencer, “Characterization of anodic spark-converted titanium surfaces for biomedical applications”, Journal of Materials Science: Materials in Medicine 10, 453-457, 1999.
    [99] Z.W. Zhao, S.M. Wen, “Direct preparation of CaTi4(PO4)6 coatings on the surface of titanium substrate by micro arc oxidation”, Journal of Materials Science: Materials in Medicine 18, 2275-2281, 2007.
    [100] P. Huang, K.W. Xu, Y. Han, “Formation mechanism of biomedical apatite coatings on porous titania layer”, Journal of Materials Science: Materials in Medicine 18, 457-463, 2007.
    [101] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation”, Biomaterials 25, 2867-2875, 2004.
    [102] J. Lawrence, L. Hao, H.R. Chew, “On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy”, Surface and Coatings Technology 200, 5581-5589, 2006.
    [103] Y.M. Zhang, P. Bataillon-Linez, P. Huang, Y.M. Zhao, Y. Han, M. Traisnel, K. W. Xu, H. F. Hildebrand, “Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior”, Journal of Biomedical Materials Research Part A 68A, 383-391, 2004.
    [104] X.L. Zhu, J. Chen, L. Scheideler, R. Reichl, J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses”, Biomaterials 25, 4087-4103, 2004.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE