| 研究生: |
陳彥儒 Chen, Yen-Ju |
|---|---|
| 論文名稱: |
半導體材料應用於MEMS陀螺儀之影響 Some effects of semiconductor materials on MEMS gyroscopes |
| 指導教授: |
李劍
Li, Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | MEMS 、陀螺儀 、品質因數 、β-Ga2O3 、CoventorWare |
| 外文關鍵詞: | MEMS, gyroscope, quality factor, β-Ga2O3, CoventorWare |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陀螺儀作為其中一種傳感器,在各種大型器械或是精密儀器中相當常見,在MEMS(microelectromechanical systems)的尺度下,圓盤形陀螺儀DRG (disk resonator gyroscope)的發展行之有年,本論文主要討論近年來於MEMS尺度下蓬勃發展的半球殼形陀螺儀HRG (hemispherical resonator gyroscope)。而陀螺儀的基本性能由品質因數Q(quality factor)影響最深, 值是基於各種物理損耗機制所帶來的能量損耗總和,其中包含熱彈性阻尼損耗、錨固定損耗、電極損耗等。經由陀螺儀結構的最佳化,可以使其他機械損耗都降至最低,但是由材料性質所主導的熱彈性阻尼損耗卻無法經由結構設計去降低,完全取決於材料本身的性質,於是就成為了左右Q值的重要損耗項,此時材料選用對於陀螺儀及各式諧振器會造成很大的影響,最常見的材料為二氧化矽。本文欲探討在MEMS的尺度下,以各式半導體材料取代二氧化矽,並且於其中能貢獻最大Q值的β-Ga2O3作主要的說明與相關分析,並且討論半導體材料相對於一般材料的優勢以及提升陀螺儀性能的前景,本論文使用有限元素分析軟體ANSYS與微機電分析軟體CoventorWare對不同的諧振陀螺儀進行分析並且求取Q值,配合上Q值的解析解相互對照比較,最後也會設計實驗步驟來收集β-Ga2O3樑諧振器的實際Q值以佐證材料的優勢性。
As one of the sensors, gyroscope is quite common in various large-scale instruments or precision instruments. At the scale of microelectromechanical systems (MEMS), the development of disk resonator gyroscope (DRG) has been in progress for many years. Here we want to disscuss the hemispherical resonator gyroscope (HRG) that has flourished in the MEMS scale in recent years. The basic performance of the gyroscope is most affected by the quality factor Q. Q-1 is the sum of the energy losses caused by various physical loss mechanisms, including the thermoelastic damping, the anchor loss, and the electrode loss. Through the optimization of the gyroscope structure, other mechanical losses can be minimized, but thermoelastic damping dominated by the material properties can not be reduced by structural design, it depends on the property of the material itself, so it becomes the most important loss term of Q. For the reasons above, material selection will have a great impact on the gyroscope and various resonators, the most common material for which is silicon oxide. In this thesis, we will discuss the substitution of silicon oxide with various semiconductor materials at the MEMS scale, especially β-Ga2O3 which can contribute to enhanced Q, and discuss the advantages of semiconductor materials relative to insulting materials. Finite element analysis software ANSYS and the MEMS analysis software CoventorWare are used to analyze different resonant gyros and obtain the Q values. Experimental procedures were performed to collect the actual Q of β-Ga2O3 beam resonators.
[1] P. Shao, "Microscale Hemispherical Shell Resonating Gyroscopes," Dissertation, Georgia Institute of Technology, Atlanta, GA, USA., 2014.
[2] C. Mayberry, "Interface Circuits for Readout and Control of a Micro-Hemispherical Resonating Gyroscope," MS Dissertation, Georgia Institute of Technology, Atlanta, GA, USA, 2014.
[3] C. Machover, "Basics of Gyroscopes vol. 1," New York: John F. Rider Publishing, 1963.
[4] R. H. Dixon and J. Bouchaud, "Markets and Applications for MEMS Inertial Sensors," in Proceedings of the SPIE - The International Society for Optical Engineering, pp. 611306-611306-10, 2006.
[5] G. Bryan, "On the Beats in the Vibrations of a Revolving Cylinder or Bell," in Proceedings of the Cambridge Philosophical Society, pp. 101-111, 1890.
[6] D. M. Rozelle, "The Hemispherical Resonator Gyro: From Wineglass to the Planets," in 19th AAS/AIAA Space Flight Mechanics Meeting, pp. 1157-1178, 2009.
[7] A. M. Shkel, C. Acar, and C. Painter, "Two Types of Micromachined Vibratory Gyroscopes," in Sensors, 2005 IEEE, 2005.
[8] J. L. Meriam and L.G. Kraige, “Engineering Mechanics Volume 2: Dynamics,” Fourth Edition, John Wiley & Sons, New York, 1998.
[9] M. F. Zaman, A. Sharma, H. Zhili, and F. Ayazi, "A Mode-Matched Silicon-Yaw Tuning-Fork Gyroscope with Subdegree-Per-Hour Allan Deviation Bias Instability," Microelectromechanical Systems, Journal of, vol. 17, pp. 1526-1536, 2008.
[10] J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, M.Weinberg , "A Micromachined Comb-Drive Tuning Fork Rate Gyroscope," in Micro Electro Mechanical Systems, 1993, MEMS 93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE., pp. 143-148, 1993.
[11] S. M. SZE, "Physics of Semiconductor Devices," JOHN WILEY, 2019.
[12] K. MacConnell, P. Varoto, "Vibration Testing: Theory and Practice," Hoboken, NJ: Wiley, 2008.
[13] T. Su, S. H. Nitzan, P. Taheri-Tehrani, M. H. Kline, B. E. Boser and D. A. Horsley, "Silicon MEMS Disk Resonator Gyroscope with an Integrated CMOS Analog Front-End," in IEEE Sensors Journal, vol. 14, no. 10, pp. 3426-3432, Oct., 2014.
[14] Q. Li, D. Xiao, X. Zhou, Y. Xu, M. Zhuo, Z. Hou, "0.04 Degree-Per-Hour MEMS Disk Resonator Gyroscope with High-Quality Factor (510 k) and Long Decaying Time Constant (74.9 s), " Microsystems & Nanoengineering, 4(1), 2018.
[15] A. Kermany, J. Bennett, G. Brawley, W. Bowen, F. Iacopi, "Factors Affecting the f × Q Product of 3C-SiC Microstrings: What Is the Upper Limit for Sensitivity," Journal of Applied Physics, 119(5), p.055304, 2016.
[16] C. H. Ahn, S. Nitzan, E. J. Ng, V. A. Hong, Y. Yang, T. Kimbrell, T. W. Kenny, "Encapsulated High Frequency (235 khz), High-Q (100 k) Disk Resonator Gyroscope with Electrostatic Parametric Pump, " Appl. Phys. Lett. 105, 243504, 2014.
[17] A. D. Challoner, H. H. Ge and J. Y. Liu, "Boeing Disc Resonator Gyroscope," 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014, Monterey, CA, pp. 504-514, 2014.
[18] D. Kim, R. M. Closkey, "A MEMS Vibratory Gyro with Mode-Matching Achieved by Resonator Mass Loading," In 2014 IEEE/ION Position, Location and Navigation Symposium (PLANS 2014); 5–8 May 2014; 499–503, Monterey, CA, 2014.
[19] D. D. Gerrard, C. H. Ahn, I. B. Flader, Y. Chen, E. J. Ng, Y. Yang, T. W. Kenny, "Q-Factor Optimization in Disk Resonator Gyroscopes Via Geometric Parameterization," in IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS 2016); 24–28 Jan 2016; 994–997, Shanghai, 2016.
[20] S. Bashmal, R. Bhat, S. Rakheja, "In-plane Free Vibration of Circular Annular Disks," Journal of Sound and Vibration, 322(1-2), 216-226, 2009.
[21] R. B. Bhat, "Frequencies of Rectangular Plates Using Characteristic Orthogonal Polynomials in Rayleigh–Ritz Method," Journal of Sound and Vibration, pp. 493-499, 1985.
[22] C. Rajalingham, R. B. Bhat, "Axisymmetric Vibration of Circular Plates and Its Analog in Elliptical Plates Using Characteristic Orthogonal Polynomials," Journal of Sound and Vibration, pp. 109-118, 1993.
[23] C. Rajalingham, R. B. Bhat, "Vibration of Elliptic Plates Using Characteristic Orthogonal Polynomials in the Rayleigh–Ritz Method," International Journal of Mechanical Sciences, 33, pp. 705-716, 1991.
[24] F. Ayazi and K. Najafi, "A HARPSS Polysilicon Vibrating Ring Gyroscope," Microelectromechanical Systems, Journal of, vol. 10, pp. 169-179, 2001.
[25] J. Cho, J. A. Gregory, K. Najafi, "High-Q, 3kHz Single-Crystal-Silicon Cylindrical Rate-Integrating Gyro (CING)," in Micro Electro Mechanical Systems (MEMS) IEEE 25th International Conference on, 2012, pp. 172-175, 2012.
[26] S. A. Ambartsumyan, "Theory of Anisotropic Shells [in Russian]," Moscow, 1961.
[27] A. C. Ugural, "Stresses in Plates and Shells, 2nd ed," McGraw-Hill, New York, 1999.
[28] O.A. Bauchau, J.I. Craig, "Kirchhoff Plate Theory," in: Bauchau O.A., Craig J.I. (eds) Structural Analysis. Solid Mechanics and Its Applications, vol 163. Springer, Dordrecht, 2009.
[29] X. Wang, W. Wu, Z. Fang, B. Luo, Y. Li, Q. Jiang, "Temperature Drift Compensation for Hemispherical Resonator Gyro Based on Natural Frequency. Sensors," 12(5), 6434-6446, 2012.
[30] Commons.wikimedia.org, File:2nd Order Damping Ratios.svg - WikimediaCommons.[online]Availableat:https://commons.wikimedia.org/wiki/File:2nd_Order_Damping_Ratios.svg?uselang=zh-hant, 2019.
[31] N. Yazdi, F. Ayazi, K. Najafi, "Micromachined Inertial Sensors, " Proceedings of the IEEE, 86(8), 1640-1659, 1998.
[32] H. Johari, "Micromachined Capacitive Silicon Bulk Acoustic Wave Gyroscopes," Unpublished doctoral dissertation, 2008.
[33] A. Duwel, R. N. Candler, T. W. Kenny, M. Varghese, "Engineering MEMS Resonators with Low Thermoelastic Damping," Microelectromechanical Systems, Journal of, vol. 15, pp. 1437-1445, 2006.
[34] H. W. Lord and Y. Shulman, "A Generalized Dynamical Theory of Thermoelasticity," Journal of the Mechanics and Physics of Solids, vol. 15, pp. 299-309, 1967.
[35] R. Abdolvand, H. Johari, G. K. Ho, A. Erbil, and F. Ayazi, "Quality Factor in Trench-refilled Polysilicon Beam Resonators," Microelectromechanical Systems, Journal of, vol. 15, pp. 471-478, 2006.
[36] R. Lifshitz and M. L. Roukes, "Thermoelastic Damping in Micro- and Nanomechanical Systems," Physical Review B, vol. 61, pp. 5600-5609, 2000.
[37] Z. Hao, A. Erbil, and F. Ayazi, "An Analytical Model for Support Loss in Micromachined Beam Resonators with In-Plane Flexural Vibrations," Sensors and Actuators A: Physical, vol. 109, pp. 156-164, 2003.
[38] Z. Hao and F. Ayazi, "Support Loss in the Radial Bulk-Mode Vibrations of Centersupported Micromechanical Disk Resonators," Sensors and Actuators A: Physical, vol. 134, pp. 582-593, 2007.
[39] D. S. Bindel and S. Govindjee, "Elastic PMLs for Resonator Anchor Loss Simulation," International Journal for Numerical Methods in Engineering, vol. 64, pp. 789-818, 2005.
[40] J. Wang, J. Butler, T. Feygelson, and C. Nguyen, "1.51-GHz Nanocrystalline Diamond Micromechanical Disk Resonator with Material-Mismatched Msolating Support," in 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, (Maastricht, Netherlands), pp. 641–644, 2004.
[41] A. Samarao, G. Casinovi, and F. Ayazi, "Passive TCF Compensation in High Q Silicon Micromechanical Resonators," in Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, pp. 116–119, 2010.
[42] S. Prabhakar, and S. Vengallatore, "Thermoelastic Damping in Bilayered Micromechanical Beam Resonators," Journal of Micromechanics and Microengineering, 17(3), pp.532-538, 2007.
[43] F. Gerstle, "Composite Materials Science and Engineering," K.K. Chawla (Springer-Verlag, 1987). MRS Bulletin, 13(12), pp.72-72, 1987.
[44] J. Bishop and V. Kinra, "Elastothermodynamic Damping in Laminated Composites," International Journal of Solids and Structures, 34(9), pp.1075-1092, 1997.
[45] S. A.Chandorkar, M. Agarwal, R. Melamud, R. N. Candler, K. E. Goodson, T. W. Kenny, "Limits of Quality Factor in Bulk-Mode Micromechanical Resonators," 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008.
[46] S. Ghaffari, S. Chandorkar, S. Wang, E. Ng, C. Ahn, V. Hong, Y. Yang and T. Kenny, "Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators," Scientific Reports, 3(1), 2013.
[47] H. Schober, "Symmetry Characterization of Electrons and Lattice Excitations," EPJ Web of Conferences, vol. 22, p. 00012, 2012.
[48] C. Kittel, "Introduction to Solid State Physics," John Wiley & Sons, Inc, USA, 1986.
[49] T. O. Woodruff, and H. Ehrenreich, "Absorption of Sound in Insulators," Phys. rev. 1961.
[50] C. L. Choy, S. P. Wong, K.Young, "Thermal-Expansion and Gruneisen Parameters for Anisotropic Solids," Phys. Rev. B 29, 1741–1747, 1984.
[51] M. OÌz̤isÌʹik, "Boundary Value Problems of Heat Conduction," Scranton: International Textbook Co, 1968.
[52] M. OÌz̤isÌʹik, "Heat conduction," New York: Wiley, 1993.
[53] M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, S. Yamakoshi, "Research and Development on Ga2O3 Transistors and Diodes," the 1st IEEE Workshop on Wide Bandgap Power Devices and Applications, Columbus, OH, pp. 100-103, 2013.
[54] H. He, R. Orlando, M. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, "First-Principles Study of the Structural, Electronic, and Optical Properties of Ga2O3 in Its Monoclinic and Hexagonal Phases," Physical Review B, 74(19), 2006.
[55] M. Orita, H. Ohta, M. Hirano and H. Hosono, "Deep-Ultraviolet Transparent Conductive β-Ga2O3 Thin Films," Applied Physics Letters, 77(25), pp.4166-4168, 2000.
[56] R. Roy, V. Hill, and E. Osborn, "Polymorphism of Ga2O3 and the System Ga2O3—H2O," Journal of the American Chemical Society, 74(3), pp.719-722, 1952.
[57] V. Nikolaev, A. Pechnikov, S. Stepanov, V. Krymov, V. Maslov, V. Bougrov, A. Romanov, "HVPE Growth of GaN Layers on Cleaved β-Ga2O3 Substrates," Key Engineering Materials, 674, 302-307, 2016.
[58] H. Von Wenckstern, " Group-III Sesquioxides: Growth, Physical Properties and Devices," Advanced Electronic Materials, 3(9), p.1600350, 2017.
[59] S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga and I. Tanaka, "Structures and Energetics of Ga2O3 Polymorphs," Journal of Physics: Condensed Matter, 19(34), p.346211, 2007.
[60] H. He, M. Blanco, and R. Pandey, "Electronic and Thermodynamic Properties of β-Ga2O3," Applied Physics Letters, 88(26), p.261904, 2006.
[61] P. Kroll, R. Dronskowski, and M. Martin, "Formation of Spinel-Type Gallium Oxynitrides: A Density-Functional Study of Binary And Ternary phases in The System Ga–O–N," Journal of Materials Chemistry, 15(32), p.3296, 2005.
[62] H. Playford, A. Hannon, E. Barney, and R. Walton, "Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction." Chemistry - A European Journal, 19(8), pp.2803-2813, 2013.
[63] M. Saurat and A. Revcolevschi, "Elaboration Par La Methode De Zone Flottante De Monocristaux D'oxydes Refractaires," Rev. Int. Hautes Temper. et Refract., 8, 291-304, 1971.
[64] J. A. Kohn, G. Katz, and J. D. Broder, "β-Ga2O3 and Its Alumina Isomorphs’ θ-Al2O3," Am. Miner., 42, 398-408, 1957.
[65] Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena and T. Luo, "Anisotropic Thermal Conductivity in Single Crystal β-Ga2O3 Oxide," Applied Physics Letters, 106(11), p.111909, 2015.
[66] M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, "Recent Progress in Ga2O3 Power Devices," Semiconductor Science and Technology, 31(3), p.034001, 2016.
[67] S. Geller, "Crystal Structure of β‐Ga2O3," the Journal of Chemical Physics, 33(3), pp.676-684, 1960.
[68] K. Sasaki, A. Kuramata, T. Masui, E. Víllora, K. Shimamura and S. Yamakoshi, "Device-Quality β-Ga2O3 Epitaxial Films Gabricated by Ozone Molecular Beam Epitaxy," Applied Physics Express, 5(3), p.035502, 2012.
[69] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates," Applied Physics Letters, 100(1), p.013504, 2012.
[70] AZoM.com. Properties: Silica - Silicon Dioxide (SiO2). [online] Available at: https://www.azom.com/properties.aspx?ArticleID=1114
[71] Z. Cheng, M. Hanke, Z. Galazka, A. Trampert, "Thermal Expansion of Single-Crystalline β-Ga2O3 from RT to 1200 K Studied by Synchrotron-Based High Resolution X-Ray Diffraction," Applied Physics Letters, 113(18), 182102, 2018.
[72] A. Masolin, P. Bouchard, R. Martini, and M. Bernacki, "Thermo-Mechanical and Fracture Properties in Single-Crystal Silicon," Journal of Materials Science, 48(3), pp.979-988, 2012.
[73] M. Rais-Zadeh, V. Gokhale, A. Ansari, M. Faucher, D. Theron, Y. Cordier and L. Buchaillot, "Gallium Nitride as an Electromechanical Material," Journal of Microelectromechanical Systems, 23(6), pp.1252-1271, 2014.
[74] S. Luan, L. Dong and R. Jia, "Analysis of the Structural, Anisotropic Elastic and Electronic Properties of β-Ga2O3 with Various Pressures," Journal of Crystal Growth, 505, pp.74-81, 2019.
[75] W. Miller, K. Böttcher, Z. Galazka, and J. Schreuer, "Numerical Modelling of the Czochralski Growth of β-Ga2O3. Crystals," 7(1), p.26, 2017.
[76] S. T. Gulati, M. J. Edwards, "ULE - Zero Expansion, Low Density, and Dimensionally Stable Material for Lightweight Optical Systems," Proc. SPIE 10289, Advanced Materials for Optics and Precision Structures: A Critical Review, 1028909, 1997.
校內:2024-07-15公開