| 研究生: |
朱俊錡 Chu, Chun-Chi |
|---|---|
| 論文名稱: |
實驗上實現用於不可信量子聯網閘集斷層掃描的通訊波長四光子糾纏源 Experimental Realization of a Telecommunication Wavelength Four-Photon Entanglement Source for Untrusted Quantum Networking Gate-Set Tomography |
| 指導教授: |
李哲明
Li, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 閘集斷層掃描 、古典過程 、單向量子計算 、量化量子過程 、薩格納克干涉儀 、多光子糾纏 、實驗通訊波段的四光子糾纏態 |
| 外文關鍵詞: | Gate-set tomography, Classical process, One-way quantum computation, Quantifying quantum processes, Sagnac interferometer, Multiphoton entanglement, Experimental telecommunication wavelength four-photon entanglement |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在量子網路的量子計算與量子資訊處理任務,通常需要透過量子斷層掃描準確 且可靠地描述量子狀態及量子過程的方法,而閘集斷層掃描(gate-set tomography) 是一種實現在量子電路的自我校準斷層掃描的工具,該方法考慮了實驗設置並非假 設理想的情況,用於量子效應的評估。閘集斷層掃描透過分析實驗結果與理想上的 誤差,透過自校準進行補償,使結果更接近理想條件。然而,在具有普遍噪音的中 等規模量子系統中,當我們進行量子計算時,量子閘中的噪音會限制實際應用中 所能獲得的量子結果。因此,執行的誤差可能超過多數閘集斷層掃描任務所默認 的容錯閾值,在最糟的情況下結果可能失去量子特性,導致實驗結果能被古典物 理所描述。類似的問題也出現在糾纏量子網路中的單向量子計算 (one-way quantum computation)。由於環境干擾或實驗中的不可預期因素,量子特性可能喪失,進而影 響量子計算的過程與結果。為了識別閘集斷層掃描在多大程度上可以被古典模擬所 描述,以及如何將閘集斷層掃描從量子電路的尺度擴展到糾纏量子網路中實現量子 計算。我們提出了在不可信條件下執行閘集斷層掃描的方法以排除任何古典模擬策 略,並計畫在四光子糾纏源使用單向量子計算模型來實現不可信量子聯網的閘集斷 層掃描,精確表徵量子計算的结果。為了想驗證我們的方案,在實驗部分,首先計 畫建立一個高保真度通訊波段的四光子糾纏態來執行理論方法的驗證,我們先是透 過薩格納克干涉的 II 型偏振糾纏光源生成糾纏光子對,將兩對糾纏光子對在確認 滿足不可區辨的條件進行光子融合,並實現以 Greenberger-Horne-Zeilinger 態(GHZ state)為目標的四光子糾纏態,在目前的四光子糾纏態可見度為 0.6364 ± 0.0735,以及我們測得的保真度下限為 0.7211 ± 0.0304,這足以證明我們在實驗上得到的是純 的四光子糾纏,且具有四光子的量子操控性。後續,我們將提升可見度作為優化工 作的首要任務,並計劃在通訊波長四光子糾纏源實現不可信量子聯網閘集斷層掃描。
There are many tasks of quantum computing and quantum information processing in quantum networks, in which quantum state and quantum process need to be accurately and reliably described by quantum tomography. Gate-set tomography (GST) is a tool to realize self-calibrating tomography in quantum circuits. This method considers the situation that the experimental setup is not assumed to be ideal and is used to evaluate quantum effects. By analyzing the error between the experimental results and the ideal and compensating by self-calibration, the GST makes the results closer to the ideal conditions. However, in the noisy intermediate-scale quantum (NISQ) system with general noise, when we implement quantum computation, the noise in the quantum gate will limit the quantum results that can be obtained in practical applications. Therefore, the error may exceed the default fault-tolerance thresh- old for most GST tasks, and in the worst case, the results may lose quantum characteristics, leading to the experimental results being described by classical physics. Similar problems also appear in one-way quantum computation (OWQC) in entangled quantum networks. Due to environmental interference or unexpected factors in the experiment device, quantum char- acteristics may be lost, which will affect the process and results of quantum calculation. In order to identify the extent to which GST can be described by classical simulation and how to extend GST from the scale of the quantum circuit to the entangled quantum network to realize quantum calculation. We propose a method to execute GST under untrusted conditions to exclude any classical simulation strategy, plan to use an OWQC in a four-photon entanglement source to realize GST of untrusted quantum networking, and accurately characterize the results of quantum computing. To verify our scheme, in the experimental part, we first plan to establish a four-photon entanglement in a high-fidelity telecommunication wavelength to verify the theoretical method. First, we generate entangled photon pairs through Sagnac’s type II polarized entangled light source, and then we make photon fusion of the two entangled photon pairs after confirming the indistinguishable conditions. The four-photon entanglement with the Greenberger-Horne-Zeilinger state (GHZ state) as the target is realized. At present, the visibility of the four-photon entangled state is 0.6364 ± 0.0735, and the lower bound fidelity we measured is 0.7211 ± 0.0304. This is sufficient to prove that what we achieved in the experiment is pure four-photon entanglement, which exhibits four-photon quantum steering. Subsequently, we will first improve visibility as the primary task of optimization work and plan to implement gate-set tomography for untrusted quantum networking on a telecommunication-wavelength four-photon entanglement source.
[1] J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 361, no. 1809, pp. 1655–1674, 2003.
[2] M. F. Riedel, D. Binosi, R. Thew, and T. Calarco, “The European quantum technologies flagship programme,” Quantum Science and Technology, vol. 2, no. 3, p. 030501, 2017.
[3] M. Riedel, M. Kovacs, P. Zoller, J. Mlynek, and T. Calarco, “Europe’s quantum flagship initiative,” Quantum Science and Technology, vol. 4, no. 2, p. 020501, 2019.
[4] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.
[5] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review Letters, vol. 86, no. 22, p. 5188, 2001.
[6] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, “Measurement-based quantum computation,” Nature Physics, vol. 5, no. 1, p. 19, 2009.
[7] V. Danos and E. Kashefi, “Determinism in the one-way model,” Physical Review A, vol. 74, no. 5, p. 052310, 2006.
[8] D. E. Browne, E. Kashefi, M. Mhalla, and S. Perdrix, “Generalized flow and determinism in measurement-based quantum computation,” New Journal of Physics, vol. 9, no. 8, p. 250, 2007.
[9] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” in 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526, IEEE, 2009.
[10] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science, vol. 335, no. 6066, pp. 303–308, 2012.
[11] C. Greganti, M.-C. Roehsner, S. Barz, T. Morimae, and P. Walther, “Demonstration of measurement-only blind quantum computing,” New Journal of Physics, vol. 18, no. 1, p. 013020, 2016.
[12] D. J. Wineland, D. Leibfried, M. D. Barrett, A. Ben-Kish, J. C. Bergquist, R. Blakestad, J. J. Bollinger, J. Britton, J. Chiaverini, B. DeMarco, et al., “Quantum control, quantum information processing, and quantum-limited metrology with trapped ions,” in Laser Spectroscopy, pp. 393–402, World Scientific, 2005.
[13] G. Wendin, “Quantum information processing with superconducting circuits: a review,” Reports on Progress in Physics, vol. 80, no. 10, p. 106001, 2017.
[14] Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. J. Briegel, and J.-W. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature, vol. 430, no. 6995, pp. 54–58, 2004.
[15] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.
[16] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nature Photonics, vol. 9, no. 10, pp. 641–652, 2015.
[17] Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Physical Review Letters, vol. 95, no. 20, p. 200502, 2005.
[18] D. Gottesman, Stabilizer codes and quantum error correction, California Institute of Technology, 1997.
[19] D. Schlingemann and R. F. Werner, “Quantum error-correcting codes associated with graphs,” Physical Review A, vol. 65, no. 1, p. 012308, 2001.
[20] D. Schlingemann, “Stabilizer codes can be realized as graph codes,” arXiv:quant-ph/0111080, 2001.
[21] P. Aliferis and D. W. Leung, “Simple proof of fault tolerance in the graph-state model,” Physical Review A, vol. 73, no. 3, p. 032308, 2006.
[22] B. Bell, M. Tame, A. S. Clark, R. Nock, W. Wadsworth, and J. G. Rarity, “Experimental characterization of universal one-way quantum computing,” New Journal of Physics, vol. 15, no. 5, p. 053030, 2013.
[23] G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with two-photon four-qubit cluster states,” Physical Review Letters, vol. 100, no. 16, p. 160502, 2008.
[24] K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Physical Review Letters, vol. 99, no. 12, p. 120503, 2007.
[25] H. Rutbeck-Goldman, P. Haas, D. Hucul, Z. Smith, M. Macalik, J. Phillips, J. Williams, C. Woodford, B. Tabakov, and K.-A. Brickman-Soderberg, “Generating Greenberger-Horne-Zeilinger states in remote trapped ions,” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, vol. 2020, pp. K01–084, 2020.
[26] Y.-L. Shi, F. Mei, Y.-F. Yu, X.-L. Feng, and Z.-M. Zhang, “Generation of a genuine four-particle entangled state of trap ions,” Quantum Information Processing, vol. 11, no. 1, pp. 229–234, 2012.
[27] S. Li, “Generation of a three-ion GHZ-like state in ion-trap systems,” International Journal of Theoretical Physics, vol. 54, no. 1, pp. 10–13, 2015.
[28] H. Häffner, W. Hänsel, C. Roos, J. Benhelm, D. Chek-al Kar, M. Chwalla, T. Körber, U. Rapol, M. Riebe, P. Schmidt, et al., “Scalable multiparticle entanglement of trapped ions,” Nature, vol. 438, no. 7068, pp. 643–646, 2005.
[29] Y. Zhao, R. Zhang, W. Chen, X.-B. Wang, and J. Hu, “Creation of Greenberger-Horne-Zeilinger states with thousands of atoms by entanglement amplification,” npj Quantum Information, vol. 7, no. 1, pp. 1–6, 2021.
[30] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature, vol. 425, no. 6961, pp. 937–940, 2003.
[31] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, et al., “Creation of a six-atom ‘Schrödinger cat’ state,” Nature, vol. 438, no. 7068, pp. 639–642, 2005.
[32] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y. Wu, Q. Zhu, Y. Zhao, S. Li, S. Guo, et al., “Quantum walks on a programmable two-dimensional 62-qubit superconducting processor,” Science, vol. 372, no. 6545, pp. 948–952, 2021.
[33] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, et al., “Strong quantum computational advantage using a superconducting quantum processor,” Physical Review Letters, vol. 127, no. 18, p. 180501, 2021.
[34] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019.
[35] J. M. Chow, J. M. Gambetta, E. Magesan, D. W. Abraham, A. W. Cross, B. R. Johnson, N. A. Masluk, C. A. Ryan, J. A. Smolin, S. J. Srinivasan, et al., “Implementing a strand of a scalable fault-tolerant quantum computing fabric,” Nature Communications, vol. 5, no. 1, pp. 1–9, 2014.
[36] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa, et al., “Demonstration of quantum volume 64 on a superconducting quantum computing system,” Quantum Science and Technology, vol. 6, no. 2, p. 025020, 2021.
[37] C.-P. Yang, Q.-P. Su, S.-B. Zheng, and F. Nori, “Entangling superconducting qubits in a multi-cavity system,” New Journal of Physics, vol. 18, no. 1, p. 013025, 2016.
[38] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Physical Review Letters, vol. 86, no. 20, p. 4435, 2001.
[39] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Żukowski, and J.-W. Pan, “Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement,” Physical Review Letters, vol. 91, no. 18, p. 180401, 2003.
[40] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics, vol. 3, no. 2, p. 91, 2007.
[41] X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nature Photonics, vol. 6, no. 4, pp. 225–228, 2012.
[42] X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, et al., “Experimental ten-photon entanglement,” Physical Review Letters, vol. 117, no. 21, p. 210502, 2016.
[43] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nature Photonics, vol. 10, no. 4, pp. 248–252, 2016.
[44] L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, et al., “Observation of ten-photon entanglement using thin BIB3O6 crystals,” Optica, vol. 4, no. 1, pp. 77–83, 2017.
[45] H.-S. Zhong, Y. Li, W. Li, L.-C. Peng, Z.-E. Su, Y. Hu, Y.-M. He, X. Ding, W. Zhang, H. Li, et al., “12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Physical Review Letters, vol. 121, no. 25, p. 250505, 2018.
[46] D. Wu, Q. Zhao, X.-M. Gu, H.-S. Zhong, Y. Zhou, L.-C. Peng, J. Qin, Y.-H. Luo, K. Chen, L. Li, et al., “Robust self-testing of multiparticle entanglement,” Physical Review Letters, vol. 127, no. 23, p. 230503, 2021.
[47] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, et al., “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science, vol. 351, no. 6278, pp. 1176–1180, 2016.
[48] K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Physical Review A, vol. 40, no. 5, p. 2847, 1989.
[49] D. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Physical Review Letters, vol. 70, no. 9, p. 1244, 1993.
[50] D. Leibfried, D. Meekhof, B. King, C. Monroe, W. M. Itano, and D. J. Wineland, “Experimental determination of the motional quantum state of a trapped atom,” Physical Review Letters, vol. 77, no. 21, p. 4281, 1996.
[51] U. Leonhardt, Measuring the quantum state of light, vol. 22. Cambridge University Press, 1997.
[52] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–2467, 1997.
[53] J. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Physical Review Letters, vol. 78, no. 2, p. 390, 1997.
[54] R. Blume-Kohout, J. K. Gamble, E. Nielsen, J. Mizrahi, J. D. Sterk, and P. Maunz, “Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit,” arXiv preprint arXiv:1310.4492, 2013.
[55] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D. Córcoles, B. R. Johnson, C. A. Ryan, and M. Steffen, “Self-consistent quantum process tomography,” Physical Review A, vol. 87, no. 6, p. 062119, 2013.
[56] A. M. Brańczyk, D. H. Mahler, L. A. Rozema, A. Darabi, A. M. Steinberg, and D. F. James, “Self-calibrating quantum state tomography,” New Journal of Physics, vol. 14, no. 8, p. 085003, 2012.
[57] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J. Mizrahi, K. Fortier, and P. Maunz, “Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography,” Nature Communications, vol. 8, no. 1, pp. 1–13, 2017.
[58] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout, “Gate set tomography,” Quantum, vol. 5, p. 557, 2021.
[59] J. P. Dehollain, J. T. Muhonen, R. Blume-Kohout, K. M. Rudinger, J. K. Gamble, E. Nielsen, A. Laucht, S. Simmons, R. Kalra, A. S. Dzurak, et al., “Optimization of a solid-state electron spin qubit using gate set tomography,” New Journal of Physics, vol. 18, no. 10, p. 103018, 2016.
[60] C. Song, J. Cui, H. Wang, J. Hao, H. Feng, and Y. Li, “Quantum computation with universal error mitigation on a superconducting quantum processor,” Science Advances, vol. 5, no. 9, p. eaaw5686, 2019.
[61] M. Rol, C. C. Bultink, T. E. O’Brien, S. De Jong, L. S. Theis, X. Fu, F. Luthi, R. F. Vermeulen, J. De Sterke, A. Bruno, et al., “Restless tuneup of high-fidelity qubit gates,” Physical Review Applied, vol. 7, no. 4, p. 041001, 2017.
[62] S. Olmschenk, R. Chicireanu, K. D. Nelson, and J. V. Porto, “Randomized benchmarking of atomic qubits in an optical lattice,” New Journal of Physics, vol. 12, no. 11, p. 113007, 2010.
[63] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus, A. M. Meier, E. Knill, D. Leibfried, and D. J. Wineland, “Single-qubit-gate error below 10^-4 in a trapped ion,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 84, no. 3, p. 030303, 2011.
[64] T. Harty, D. Allcock, C. J. Ballance, L. Guidoni, H. Janacek, N. Linke, D. Stacey, and D. Lucas, “High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit,” Physical Review Letters, vol. 113, no. 22, p. 220501, 2014.
[65] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, et al., “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature, vol. 508, no. 7497, pp. 500–503, 2014.
[66] F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, P. Neumann, T. Schulte-Herbrüggen, et al., “High-fidelity spin entanglement using optimal control,” Nature Communications, vol. 5, no. 1, p. 3371, 2014.
[67] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
[68] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quantum computing: Progress and challenges,” Applied Physics Reviews, vol. 6, no. 2, p. 021314, 2019.
[69] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state of play,” Annual Review of Condensed Matter Physics, vol. 11, pp. 369–395, 2020.
[70] J.-C. Xu, “Quantifying one-way quantum computation and its applications,” A Thesis Submitted for the Degree of Master, 2020.
[71] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, no. 24, p. 4337, 1995.
[72] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “Generation of correlated photon pairs in type-ii parametric down conversion—revisited,” Journal of Modern Optics, vol. 48, no. 13, pp. 1997–2007, 2001.
[73] Y. Shih, “Entangled biphoton source-property and preparation,” Reports on Progress in Physics, vol. 66, no. 6, p. 1009, 2003.
[74] M. H. Rubin, D. N. Klyshko, Y. Shih, and A. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Physical Review A, vol. 50, no. 6, p. 5122, 1994.
[75] W.-T. Kao, C.-Y. Huang, T.-J. Tsai, S.-H. Chen, S.-Y. Sun, Y.-C. Li, T.-L. Liao, C.-S. Chuu, H. Lu, and C.-M. Li, “Scalable determination of multipartite entanglement in quantum networks,” npj Quantum Information, vol. 10, no. 1, p. 73, 2024.
[76] D. Greenbaum, “Introduction to quantum gate set tomography,” arXiv preprint arXiv:1509.02921, 2015.
[77] S.-H. Chen, H. Lu, Q.-C. Sun, Q. Zhang, Y.-A. Chen, and C.-M. Li, “Discriminating quantum correlations with networking quantum teleportation,” Physical Review Research, vol. 2, no. 1, p. 013043, 2020.
[78] M. A. Nielsen and I. Chuang, Quantum computation and quantum information. American Association of Physics Teachers, 2002.
[79] J. M. Chow, J. M. Gambetta, A. D. Corcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, J. R. Rozen, et al., “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Physical Review Letters, vol. 109, no. 6, p. 060501, 2012.
[80] K. Blum, Density matrix theory and applications, vol. 64. Springer Science & Business Media, 2012.
[81] D. Rosset, R. Ferretti-Schöbitz, J.-D. Bancal, N. Gisin, and Y.-C. Liang, “Imperfect measurement settings: Implications for quantum state tomography and entanglement witnesses,” Physical Review A, vol. 86, no. 6, p. 062325, 2012.
[82] A. Y. Kitaev, A. Shen, and M. N. Vyalyi, Classical and quantum computation. No. 47, American Mathematical Soc., 2002.
[83] P. Aliferis, D. Gottesman, and J. Preskill, “Quantum accuracy threshold for concatenated distance-3 codes,” arXiv preprint quant-ph/0504218, 2005.
[84] P. Aliferis, F. Brito, D. P. DiVincenzo, J. Preskill, M. Steffen, and B. M. Terhal, “Fault-tolerant computing with biased-noise superconducting qubits: a case study,” New Journal of Physics, vol. 11, no. 1, p. 013061, 2009.
[85] G. Benenti and G. Strini, “Computing the distance between quantum channels: usefulness of the fano representation,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 43, no. 21, p. 215508, 2010.
[86] J. Watrous, “Simpler semidefinite programs for completely bounded norms,” arXiv preprint arXiv:1207.5726, 2012.
[87] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1.” http://cvxr.com/cvx, Mar. 2014.
[88] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control (V. Blondel, S. Boyd, and H. Kimura, eds.), Lecture Notes in Control and Information Sciences, pp. 95–110, Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/graph_dcp.html.
[89] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Physical Review, vol. 47, no. 10, p. 777, 1935.
[90] H.-P. Breuer, F. Petruccione, et al., The theory of open quantum systems. Oxford University Press on Demand, 2002.
[91] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review Letters, vol. 86, pp. 5188–5191, May 2001.
[92] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Physical Review A, vol. 68, no. 2, p. 022312, 2003.
[93] T. Bodiya and L.-M. Duan, “Scalable generation of graph-state entanglement through realistic linear optics,” Physical Review Letters, vol. 97, no. 14, p. 143601, 2006.
[94] M. Van den Nest, A. Miyake, W. Dür, and H. J. Briegel, “Universal resources for measurement-based quantum computation,” Physical Review Letters, vol. 97, no. 15, p. 150504, 2006.
[95] T. Morimae and K. Fujii, “Blind quantum computation protocol in which Alice only makes measurements,” Physical Review A, vol. 87, no. 5, p. 050301, 2013.
[96] M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Physical Review A, vol. 59, no. 3, p. 1829, 1999.
[97] D. Markham and B. C. Sanders, “Erratum: Graph states for quantum secret sharing [phys. rev. a 78, 042309 (2008)],” Physical Review A, vol. 83, no. 1, p. 019901, 2011.
[98] B. Bell, D. Herrera-Martí, M. Tame, D. Markham, W. Wadsworth, and J. Rarity, “Experimental demonstration of a graph state quantum error-correction code,” Nature Communications, vol. 5, no. 1, pp. 1–10, 2014.
[99] “Id281 snspd system - quantum detection systems,” 2025. Accessed: 2025-01-10.
[100] C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order einstein-podolsky-rosen steering,” Physical Review Letters, vol. 115, no. 1, p. 010402, 2015.
[101] M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE Journal of Quantum Electronics, vol. 28, no. 11, pp. 2631–2654, 1992.
[102] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, no. 2, pp. 777–838, 2012.
[103] “Id1000 time controller - quantum detection systems,” 2025. Accessed: 2025-01-10.
[104] R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photonics, vol. 3, no. 12, pp. 696–705, 2009.
[105] “Id qube nir gated - quantum detection systems,” 2025. Accessed: 2025-01-10.
[106] M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling photons radiated by independent pulsed sources a,” Annals of the New York Academy of Sciences, vol. 755, no. 1, pp. 91–102, 1995.
[107] R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of an ultra-bright single-photon source using superconducting nanowire single-photon detectors,” Optics Communications, vol. 336, pp. 47–54, 2015.
[108] S. Sempere-Llagostera, G. Thekkadath, R. Patel, W. Kolthammer, and I. Walmsley, “Reducing g(2)(0) of a parametric down-conversion source via photon-number resolution with superconducting nanowire detectors,” Optics Express, vol. 30, no. 2, pp. 3138–3147, 2022.
[109] M. Beck, “Comparing measurements of g(2)(0) performed with different coincidence detection techniques,” JOSA B, vol. 24, no. 12, pp. 2972–2978, 2007.
[110] S.-L. Li, H.-L. Yong, Y.-H. Li, K.-X. Yang, H.-B. Fu, H. Liu, H. Liang, J.-G. Ren, Y. Cao, J. Yin, et al., “Experimental demonstration of free-space two-photon interference,” Optics Express, vol. 30, no. 7, pp. 11684–11692, 2022.
[111] F. Mitschke and F. Mitschke, Fiber Optics. Springer, 2016.
[112] Newport Corporation, “Tbf-1550-1.0-fcupc.” https://www.newport.com/p/TBF-1550-1.0-FCUPC. Accessed: 2025-01-16.
[113] O. Gühne and G. Tóth, “Entanglement detection,” Physics Reports, vol. 474, no. 1-6, pp. 1–75, 2009.
[114] Thorlabs, “Thorlabs mpc320 motorized fiber polarization controllers.” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=12896&pn=MPC320#12990. Accessed: 2025-01-16.
校內:2027-01-31公開