簡易檢索 / 詳目顯示

研究生: 張振晏
Jhang, Jhen-Yan
論文名稱: 應用最佳化演算法於通訊陣列之分析與設計
Application of Optimization Algorithms to Analysis and Design of Communication Arrays
指導教授: 李坤洲
Lee, Kun-Chou
學位類別: 博士
Doctor
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 157
中文關鍵詞: 通訊陣列粒子群演算法類電磁演算法耦合效應蛙跳演算法
外文關鍵詞: mutual coupling, shuffled frog-leaping algorithm (SFLA), communication arrays, electromagnetism-like algorithm (EM-like), particle swarm optimization (PSO)
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文充分利用智慧型最佳化演算法之優勢,將其應用於通訊陣列之上,並進而對通訊陣列間之耦合效應進行探討與補償。依據通訊陣列之特性,先針對通訊陣列的分析與設計進行研究,探討改變波束函數中的陣列元素參數,對陣列場形圖所產生之影響,然後再進一步探討適應性陣列,包含其最佳化與耦合效應。本論文所闡述之理論與方法可適用於所有通訊陣列,包括空中電磁波天線陣列與水下聲波陣列。
    本論文首先針對通訊陣列進行解析,而後再援引入智慧型最佳化演算法,並透過不同的元素參數調整方式,對通訊陣列之場形圖進行最佳化設計。所採用之智慧型最佳化演算法有粒子群演算法(particle swarm optimization, PSO)、類電磁演算法(electromagnetism-like algorithm, EM-like)及蛙跳演算法(shuffled frog-leaping algorithm, SFLA)三種,此三種演算法的優點在於求解快速,且尋優過程中皆毋須使用梯度運算,可降低落入區域解之可能性。另外,此三種演算法之公式皆十分簡單,易於理解與程序規劃,且無須編碼,可直接在十進制中進行操作。陣列最佳化設計旨在提高通訊系統之品質,其可藉由調整陣列元素之位置、振幅及相位來達成。本論文所採用之方式,乃是基於主波束寬度或零值(null)方向的要求下,盡可能地抑制旁波瓣級(sidelobe level, SLL)。透過各章之模擬結果可知,本論文所採用之智慧型算法,可自動尋找全域解,降低落入區域解之可能性,對於求解陣列最佳化十分有利。本論文更進一步針對適應性陣列進行探討,如眾所周知,傳統適應性陣列的分析方式多半採用最小均方法(least mean square, LMS)、遞迴最小平方法(recursive least squares, RLS)或廣義特徵值法(generalized eigenvalue, GE)等,這些方法皆含有梯度運算,亦即所求得之結果極易陷入區域解,是以本論文改採智慧型最佳化演算法,對適應性陣列進行分析,所求得之結果皆能滿足預設之要求。此外,通訊陣列收發訊號時,陣列元素間會產生交互影響而改變通訊品質,此效應於天線陣列中已有諸多探討,本論文乃針對水下通訊陣列之耦合效應進行探討,並提出補償之方法。
    本論文共分八章。第一章闡述研究背景、動機、目的以及其重要性,在對歷史進行回顧後,更進一步說明與本論文密切相關的基礎知識。第二章,探討傳統的解析方式,即知名的切比雪夫多項式(Chebyshev polynomial),並提出嶄新的概念,在切比雪夫空間中直接對切比雪夫陣列進行零值控制(nulling)。第三章至第五章則運用智慧型演算法,用以進行陣列最佳化設計。第三章使用粒子群演算法,透過調整位置與權重,對場形圖之旁波瓣級進行抑制。第四章採用類電磁演算法,透過調整位置、振幅與相位三種方式,對旁波瓣級進行抑制,並以相位調整的方式進行零值操控。第五章則使用蛙跳演算法對陣列場形圖進行最佳化,其最佳化目標除了抑制旁波瓣級之外,更採用束寬限制條件(beamwidth constraint, BWC),並在此限制下進行旁波瓣級之抑制,以及達到零值方向之操控。第六章應用粒子群演算法,求解適應性陣列之最佳權重,並與最小均方法做比較。第七章則針對通訊陣列之耦合效應進行探討,並提出校正補償方法。第八章則為本文結論。

    In this dissertation, the stochastic evolutionary techniques are applied to analysis and design of communication arrays. These techniques include the particle swarm optimization, electromagnetism-like algorithm, and shuffled frog-leaping algorithm. The goal is to achieve optimum performance of a communication array by adjusting the positions, amplitudes, and phases of array elements. Restrictions including beamwidth and nulling constraints can be easily imposed on our optimization processes. With the use of stochastic evolutionary techniques, proposed processes require no gradient operation, and can automatically converge toward the global solution. In addition, the mutual coupling effects are also treated in this study.
    The benefits of stochastic evolutionary techniques are utilized to treat different types of communication arrays. Initially, the array perforamance is optimized by different stochastic evolutionary techniques. We utilize the particle swarm optimization, electromagnetism-like algorithm, and shuffled frog-leaping algorithm to achieve the array optimization. Note that our optimization processes require neither gradient operations nor initial guess. Therefore, our optimization processes will not get stuck in local solutions. In addition, our approaches are very easy in formulation and programming. Our analyses are further extended to treat adaptive communication arrays. Finally, the mutual coupling effects of adaptive arrays are studies in this dissertation.
    This dissertation includes 8 chapters. Chapter 1 explains the background, motivation, purpose, and importance of this research. Chapter 2 gives analyses of Chebyshev array nulling in Chebyshev domain. From Chapter 3 to Chapter 5, optimizations of communication arrays are accomplished through different stochastic evolutionary techniques. In Chapter 3, the particle swarm optimization is applied to the sidelobe level minimization of array pattern. The optimization process is accomplished by adjusting the position and weight of array elements. In Chapter 4, the electromagnetism-like algorithm is applied to the synthesis of communication arrays. The goal is to minimize the sidelobe level under some constraints. The constraints include beamwidth and nulling. The adjusting methods include position-only, amplitude-only, and phase-only approaches. In Chapter 5, the shuffled frog-leaping algorithm is applied to array pattern optimization of sidelobe level reduction and nulling under the beamwidth constraint. Chapter 6 utilizes the particle swarm optimization algorithm to calculate the optimum weights of an adaptive array. Chapter 7 gives mutual-coupling analyses for the performance of adaptive arrays. Finally, the conclusion is given in Chapter 8.

    第1章 緒論 1 1.1 引言 1 1.1.1 背景 1 1.1.2 動機 2 1.1.3 目的 3 1.1.4 重要性 3 1.2 回顧 4 1.2.1 陸地通訊 5 1.2.2 水下通訊 6 1.3 概述 8 1.3.1 水聲系統與聲場 9 1.3.2 陣列分析與合成 12 1.3.3 適應性通訊陣列 14 1.3.4 阻抗與耦合效應 15 1.4 架構 18 1.4.1 論文架構概要 18 1.4.2 智慧型演算法 19 1.4.3 主要研究貢獻 20 第2章 切比雪夫陣列之零值操控 31 2.1 簡介 31 2.2 公式 32 2.2.1 陣列波束函數 32 2.2.2 切比雪夫陣列 33 2.2.3 零值方向操控 34 2.3 模擬 36 2.4 結語 38 第3章 粒子群演算法於陣列最佳化之應用 47 3.1 簡介 47 3.2 公式 48 3.2.1 陣列波束函數 48 3.2.2 粒子群演算法 49 3.3 模擬 51 3.4 結語 53 第4章 類電磁演算法於陣列最佳化之應用 65 4.1 簡介 65 4.2 公式 66 4.2.1 陣列波束函數 66 4.2.2 類電磁演算法 68 4.3 模擬 71 4.3.1 調整位置和權重於旁波瓣之抑制 71 4.3.2 調整相位於零值方向操控 72 4.4 結語 74 第5章 蛙跳演算法於陣列最佳化之應用 91 5.1 簡介 91 5.2 公式 93 5.2.1 陣列波束函數 93 5.2.2 蛙跳演算法 95 5.3 模擬 97 5.3.1 調整位置、振幅與相位於旁波瓣之抑制 97 5.3.2 調整位置、振幅與相位於零值方向操控 100 5.4 結語 101 第6章 智慧型演算法於適應性陣列之應用 123 6.1 簡介 123 6.2 公式 124 6.2.1 適應性陣列 124 6.2.2 粒子群演算法 125 6.3 模擬 127 6.4 結語 129 第7章 適應性水下通訊陣列之耦合效應 137 7.1 簡介 137 7.2 公式 138 7.3 模擬 140 7.4 結語 141 第8章 結論 147 8.1 論文總結 147 8.2 未來目標 149 參考文獻 151 自述 157

    [1] W. Sun and Y. Yuan, Optimization theory and methods: nonlinear programming, New York: Springer, 2006.
    [2] L. Davis, Genetic algorithms and simulated annealing, London: Pitman, 1987.
    [3] 李坤洲、張振晏,“應用類神經網路之積分於聲納陣列元素之自身與交互阻抗計算”,第八屆水下技術研討會,台灣台北市,2006。
    [4] K. C. Lee, “Impedance calculations for elements of sonar arrays by neural-network-based integration,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 3, pp. 1065-1070, Jul. 2007.
    [5] K. C. Lee, “Mutual coupling analyses of antenna arrays by neural network models with radial basis functions,” Journal of Electromagnetic Waves and Applications, vol. 17, no. 8, pp. 1217-1223, 2003.
    [6] 李坤洲、張振晏、黃智威等,“水下通訊系統之陣列設計與耦合效應之研究”,第九屆水下技術研討會,台灣台北市,2007。
    [7] K. C. Lee and J. Y. Jhang, “Application of neural network and its differential to the mutual coupling effects of sonar arrays,” in IEEE Oceans Asia Pacific Symposium, Singapore, 2006, pp. 1-4.
    [8] K. C. Lee and J. Y. Jhang, “Mutual-impedance calculation for arrays of sonar transducers by integration on neural networks,” in IEEE Oceans Asia Pacific Symposium, Singapore, 2006, pp. 1-5.
    [9] H. Yagi and S. Uda, “Projector of the sharpest beam of electric waves,” Proc. Imperial Academy of Japan, vol. 2, pp. 49-52, 1926.
    [10] J. Merhaut, Theory of electroacoustics, New York: McGraw-Hill, 1981.
    [11] S. C. Thompson, “Numerical-calculation of the mutual impedance between pistons in a plane wall,” Journal of the Acoustical Society of America, vol. 66, no. 5, pp. 1553-1554, 1979.
    [12] W. S. Burdic, Underwater acoustic system analysis, Englewood Cliffs, NJ: Prentice-Hall, 1984.
    [13] C. H. Sherman, “Analysis of acoustic interactions in transducer arrays,” IEEE Transactions on Sonics and Ultrasonics, vol. Su-13, no. 1, pp. 9, 1966.
    [14] J. K. Lee, I. C. Seo, and S. M. Han, “Radiation power estimation for sonar transducer arrays considering acoustic interaction,” Sensors and Actuators A-Physical, vol. 90, no. 1-2, pp. 1-6, May 2001.
    [15] K. C. Lee and J. Y. Jhang, “Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays,” Journal of Electromagnetic Waves and Applications, vol. 20, no. 14, pp. 2001-2012, 2006.
    [16] K. C. Lee and J. Y. Jhang, “Application of electromagnetism-like algorithm to phase-only syntheses of antenna arrays,” Progress in Electromagnetics Research-PIER, vol. 83, pp. 279-291, 2008.
    [17] J. Y. Jhang and K. C. Lee, “Arrar pattern optimization using electromagnetism-like algorithm,” AEU-International Journal of Electronics and Communications, vol. 63, pp. 491-496, 2009.
    [18] K. C. Lee, “Optimization of bent wire antennas using genetic algorithms,” Journal of Electromagnetic Waves and Applications, vol. 16, no. 4, pp. 515-522, 2002.
    [19] K. C. Lee, J. Y. Jhang, and T. N. Lin, “An automatically converging scheme based on the neural network and its application in antennas,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 4, pp. 1270-1274, Apr. 2009.
    [20] K. C. Lee, S. C. Cheng, Y. H. Chen et al., “Application of radial basis function based neural networks to arrays of nonlinear antennas,” in IEEE Antennas and Propagation Society International Symposium, Albuquerque, USA, 2006, pp. 955-958.
    [21] K. C. Lee, “Frequency-domain analyses of nonlinearly loaded antenna arrays using simulated annealing algorithms,” Progress in Electromagnetics Research-PIER, vol. 53, pp. 271-281, 2005.
    [22] H. A. Abdallah and W. Wasylkiwskyj, “A numerical technique for calculating mutual impedance and element patterns of antenna arrays based on the characteristics of an isolated element,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 10, pp. 3293-3299, Oct. 2005.
    [23] T. Oishi and D. A. Brown, “Measurements of mutual radiation impedance between baffled cylindrical shell transducers,” Journal of the Acoustical Society of America, vol. 122, no. 3, pp. 1581-1586, Sep. 2007.
    [24] H. Lee, J. Tak, W. Moon et al., “Effects of mutual impedance on the radiation characteristics of transducer arrays,” Journal of the Acoustical Society of America, vol. 115, no. 2, pp. 666-679, Feb. 2004.
    [25] K. C. Lee, J. Y. Jhang, and M. C. Huang, “Performance of underwater adaptive array including mutual coupling effects,” Applied Acoustics, vol. 70, no. 1, pp. 190-193, Jan. 2009.
    [26] M. Dorigo and T. Stutzle, Ant colony optimization, Cambridge, Mass.: MIT Press, 2004.
    [27] S. I. Birbil, S. C. Fang, and R. L. Sheu, “On the convergence of a population-based global optimization algorithm,” Journal of Global Optimization, vol. 30, no. 2, pp. 301-318, Nov. 2004.
    [28] H. Steyskal, R. A. Shore, and R. L. Haupt, “Methods for null control and their effects on the radiation-pattern,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 404-409, Mar. 1986.
    [29] H. M. Ibrahim, “Null steering by real-weight control — a method of decoupling the weights,” IEEE Transactions on Antennas and Propagation, vol. 39, no. 11, pp. 1648-1650, Nov. 1991.
    [30] C. L. Dolph, “A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level,” Proceedings of the IRE, vol. 34, no. 6, pp. 335-348, 1946.
    [31] A. Safaai-Jazi, “A new formulation for the design of Chebyshev arrays,” IEEE Transactions on Antennas and Propagation, vol. 42, no. 3, pp. 439-443, Mar. 1994.
    [32] T. T. Taylor, “Design of line source antennas for narrow beamwidth and low side lobes,” IRE Transactions on Antennas and Propagation, vol. 7, pp. 16-28, 1955.
    [33] R. S. Elliott, “Design of line source antennas for narrow beamwidth and asymmetric low sidelobes,” IEEE Transactions on Antennas and Propagation, vol. Ap-23, no. 1, pp. 100-107, 1975.
    [34] R. S. Elliott, “Design of line-source antennas for sum patterns with sidelobes of individually arbitrary heights,” IEEE Transactions on Antennas and Propagation, vol. 24, no. 1, pp. 76-83, 1976.
    [35] R. L. Haupt, “Phase-only adaptive nulling with a genetic algorithm,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 6, pp. 1009-1015, Jun. 1997.
    [36] H. Steyskal, “Simple method for pattern nulling by phase perturbation,” IEEE Transactions on Antennas and Propagation, vol. 31, no. 1, pp. 163-166, 1983.
    [37] C. A. Balanis, Antenna theory: analysis and design, 3rd ed., Hoboken, NJ: Wiley, 2005.
    [38] R. C. Hansen, Phased Array Antennas, New York: Wiley, 1998.
    [39] R. K. Arora and N. C. V. Krishnamacharyulu, “Synthesis of unequally spaced arrays using dynamic programming,” IEEE Transactions on Antennas and Propagation, vol. AP-16, no. 5, pp. 593-595, Sep. 1968.
    [40] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. IEEE Conference Neural Networks IV, Piscataway, NJ, 1995.
    [41] Y. Rahmat-Samii and E. Michielssen, Electromagnetic optimization by genetic algorithms, New York: J. Wiley, 1999.
    [42] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, pp. 397-407, Feb. 2004.
    [43] M. Clerc and J. Kennedy, “The particle swarm — explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58-63, Feb. 2002.
    [44] A. Carlisle and G. Doizier, “An off-the-shelf PSO,” in Proc. Workshop Particle Swarm Optimization, Indianapolis, IN, 2001.
    [45] P. Jarske, T. Saramaki, S. K. Mitra et al., “On properties and design of nonuniformly spaced linear arrays,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, no. 3, pp. 372-380, Mar. 1988.
    [46] V. Murino, A. Trucco, and C. S. Regazzoni, “Synthesis of unequally spaced arrays by simulated annealing,” IEEE Transactions on Signal Processing, vol. 44, no. 1, pp. 119-123, Jan. 1996.
    [47] C. Rocha-Alicano, D. Covarrubias-Rosales, C. Brizuela-Rodriguez et al., “Differential evolution algorithm applied to sidelobe level reduction on a planar array,” AEU-International Journal of Electronics and Communications, vol. 61, no. 5, pp. 286-290, 2007.
    [48] M. A. Panduro, “Design of coherently radiating structures in a linear array geometry using genetic algorithms,” AEU-International Journal of Electronics and Communications, vol. 61, no. 8, pp. 515-520, 2007.
    [49] M. J. Mismar, T. H. Ismail, and D. I. Abu-Al-Nadi, “Analytical array polynomial method for linear antenna arrays with phase-only control,” AEU-International Journal of Electronics and Communications, vol. 61, no. 7, pp. 485-492, 2007.
    [50] D. I. Abu-Al-Nadi, T. H. Ismail, and M. J. Mismar, “Interference suppression by element position control of phased arrays using LM algorithm,” AEU-International Journal of Electronics and Communications, vol. 60, no. 2, pp. 151-158, 2006.
    [51] M. A. Panduro, D. H. Covarrubias, C. A. Brizuela et al., “A multi-objective approach in the linear antenna array design,” AEU-International Journal of Electronics and Communications, vol. 59, no. 4, pp. 205-212, 2005.
    [52] E. Rajo-Iglesias and O. Quevedo-Teruel, “Linear array synthesis using an ant-colony-optimization-based algorithm,” IEEE Antennas and Propagation Magazine, vol. 49, no. 2, pp. 70-79, Apr. 2007.
    [53] P. J. Bevelacqua and C. A. Balanis, “Minimum sidelobe levels for linear arrays,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 12, pp. 3442-3449, Dec. 2007.
    [54] S. I. Birbil and S. C. Fang, “An electromagnetism-like mechanism for global optimization,” Journal of Global Optimization, vol. 25, no. 3, pp. 263-282, Mar. 2003.
    [55] M. Clerc, Particle swarm optimization, London: ISTE, 2006.
    [56] J. F. Deford and O. P. Gandhi, “Phase-only synthesis of minimum peak sidelobe patterns for linear and planar arrays,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 2, pp. 191-201, Feb. 1988.
    [57] B. P. Ng, M. H. Er, and C. Kot, “A flexible array synthesis method using quadratic-programming,” IEEE Transactions on Antennas and Propagation, vol. 41, no. 11, pp. 1541-1550, Nov. 1993.
    [58] T. H. Ismail and M. M. Dawoud, “Null steering in phased-arrays by controlling the element positions,” IEEE Transactions on Antennas and Propagation, vol. 39, no. 11, pp. 1561-1566, Nov. 1991.
    [59] B. P. Ng, M. H. Er, and C. Kot, “Linear-array geometry synthesis with minimum sidelobe level and null control,” IEE Proceedings-Microwaves Antennas and Propagation, vol. 141, no. 3, pp. 162-166, Jun. 1994.
    [60] M. M. Khodier and C. G. Christodoulou, “Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 8, pp. 2674-2679, Aug. 2005.
    [61] M. Eusuff, K. Lansey, and F. Pasha, “Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization,” Engineering Optimization, vol. 38, no. 2, pp. 129-154, Mar. 2006.
    [62] R. T. Compton, Adaptive antennas: concepts and performance, Englewood Cliffs, NJ: Prentice-Hall, 1988.
    [63] D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for phased array synthesis,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 3, pp. 771-779, Mar. 2004.
    [64] K. T. Chen, “An adaptive active control of sound transmission through an aperture at low frequencies,” Applied Acoustics, vol. 46, no. 2, pp. 153-174, 1995.
    [65] K. T. Chen, Y. N. Chen, W. Chen et al., “Adaptive active control on the acoustic transmission of the acoustic sources in aperture at low frequencies,” Applied Acoustics, vol. 54, no. 2, pp. 141-164, Jun. 1998.
    [66] Y. C. Park and S. D. Sommerfeldt, “A fast adaptive noise control algorithm based on the lattice structure,” Applied Acoustics, vol. 47, no. 1, pp. 1-25, 1996.
    [67] A. B. Wright, B. Xie, and A. Karthikeyan, “A comparison of white test signals used in active sound cancellation,” Applied Acoustics, vol. 59, no. 4, pp. 337-352, Apr. 2000.
    [68] R. W. Jones, B. L. Olsen, and B. R. Mace, “Comparison of convergence characteristics of adaptive IIR and FIR filters for active noise control in a duct,” Applied Acoustics, vol. 68, no. 7, pp. 729-738, Jul. 2007.
    [69] S. S. Haykin, Adaptive filter theory, 4th ed., Upper Saddle River, NJ: Prentice Hall, 2002.
    [70] K. C. Lee, “A genetic algorithm based direction finding technique with compensation of mutual coupling effects,” Journal of Electromagnetic Waves and Applications, vol. 17, no. 11, pp. 1613-1624, 2003.
    [71] K. C. Lee and T. H. Chu, “Analysis of injection-locked antenna array including mutual coupling effects,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 11, pp. 2885-2890, Nov. 2004.
    [72] K. C. Lee and T. H. Chu, “A circuit model for mutual coupling analysis of a finite antenna array,” IEEE Transactions on Electromagnetic Compatibility, vol. 38, no. 3, pp. 483-489, Aug. 1996.
    [73] K. C. Lee, “Optimization of a finite dipole array with genetic algorithm including mutual coupling effects,” International Journal of Rf and Microwave Computer-Aided Engineering, vol. 10, no. 6, pp. 379-382, Nov. 2000.
    [74] K. C. Lee and T. N. Lin, “Application of neural networks to analyses of nonlinearly loaded antenna arrays including mutual coupling effects,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 3, pp. 1126-1132, Mar. 2005.
    [75] K. C. Lee and T. H. Chu, “Mutual coupling mechanisms within arrays of nonlinear antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 47, no. 4, pp. 963-970, Nov. 2005.
    [76] K. C. Lee, “Genetic algorithms based analyses of nonlinearly loaded antenna arrays including mutual coupling effects,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 4, pp. 776-781, Apr. 2003.
    [77] K. C. Lee, “A simplified model for the mutual coupling effects of adaptive antenna arrays,” Journal of Electromagnetic Waves and Applications, vol. 17, no. 9, pp. 1261-1268, 2003.
    [78] Q. B. Mao, B. L. Xu, Z. Jiang et al., “A piezoelectric array for sensing radiation modes,” Applied Acoustics, vol. 64, no. 7, pp. 669-680, Jul. 2003.
    [79] J. M. Rigelsford and A. Tennant, “A 64 element acoustic volumetric array,” Applied Acoustics, vol. 61, no. 4, pp. 469-475, Dec. 2000.
    [80] R. M. Xia, S. Wende, G. P. Chen et al., “A new-style phased array transducer for HIFU,” Applied Acoustics, vol. 63, no. 9, pp. 957-964, Sep. 2002.
    [81] E. M. Arase, “Mutual radiation impedance of square and rectangular pistons in a rigid infinite baffle,” Journal of the Acoustical Society of America, vol. 36, no. 8, pp. 1521-1525, 1964.
    [82] E. M. Arase and P. D. Hahn, “Tables for mutual radiation resistance and reactance of aligned rectangular pistons in an Infinite rigid baffle,” Journal of the Acoustical Society of America, vol. 37, no. 3, pp. 531-&, Mar. 1965.
    [83] K. C. Lee, “Understanding and Interpretations for mutual coupling within sonar arrays,” IEEE Journal of Oceanic Engineering, vol. 33, no. 2, pp. 210-214, Apr. 2008.
    [84] D. S. Burnett and W. W. Soroka, “Tables of rectangular piston radiation impedance functions, with application to sound transmission loss through deep apertures,” Journal of the Acoustical Society of America, vol. 51, no. 5, pp. 1618-1623, 1972.
    [85] D. Mikami, T. Yokoyama, A. Hasegawa et al., “Sound power reduction of underwater array projector caused by mutual radiation impedance,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 36, no. 5B, pp. 3340-3344, May 1997.
    [86] T. Yokoyama, M. Henmi, A. Hasegawa et al., “Effects of mutual interactions on a phased transducer array,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 37, no. 5B, pp. 3166-3171, May 1998.
    [87] K. C. Lee, “Analysis of large nonlinearly loaded antenna arrays under multitone excitation,” Microwave and Optical Technology Letters, vol. 25, no. 5, pp. 319-323, Jun. 2000.
    [88] K. C. Lee, “Application of neural network and its extension of derivative to scattering from a nonlinearly loaded antenna,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 990-993, Mar. 2007.
    [89] K. C. Lee, “Two efficient algorithms for the analyses of a nonlinearly loaded antenna and antenna array in the frequency domain,” IEEE Transactions on Electromagnetic Compatibility, vol. 42, no. 4, pp. 339-346, Nov. 2000.
    [90] K. C. Lee, “An efficient algorithm for the steady-state analysis of a nonlineraly loaded antenna array,” Journal of Electromagnetic Waves and Applications, vol. 14, no. 10, pp. 1373-1382, 2000.

    下載圖示 校內:2014-07-02公開
    校外:2014-07-02公開
    QR CODE