簡易檢索 / 詳目顯示

研究生: 吳芯霈
Wu, Hsin-Pei
論文名稱: 細銅線黏塑性模型及其於電子封裝可靠度分析之應用
The viscoplastic model of fine Cu traces and its application to reliability assessment of electronic packages
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 94
中文關鍵詞: 重分佈層銅線亞蘭德模型黏塑性
外文關鍵詞: redistribution layer, Cu traces, Anand model, viscoplastic
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 扇出型晶圓級封裝是現今異質整合的一個主要技術,此封裝是由良裸晶粒、環氧樹酯封膠、重分佈層所組成,重分佈層中金屬導線材料以銅金屬薄膜為為主。扇出型晶圓級封裝之優勢包括:低成本、高性能、高接腳數。然而隨著現今積體電路中電晶體密度上升,封裝中重分佈層線寬線距不斷縮小,重分佈層也需要多層堆疊,這些使用上的可靠度仍然備受挑戰。基於上述需求,本論文的目標為建立細銅線之黏塑性本構模型,並將其應用於電子封裝可靠度分析。
    目前在重分佈層中最小的線寬及線距分別約為2 µm及2 µm,為了分析在此尺度下銅線之可靠度,本文的目的是以實驗方法量測扇出型晶圓級封裝中銅線之本構行為,並建立對應之黏塑性本構模型,並將此黏塑性本構模型應用於封裝板階熱循環模擬,分析扇出型晶圓級封裝中之多層重分佈層中銅金屬塑性變形的累積,並探討幾何參數改變對結構受熱循環負載之可靠度之影響。
    由實驗結果發現,相較於相近厚度的銅薄膜材料,銅線具有較高的降伏應力以及較低的延性。由實驗研究所建立之銅線亞蘭德黏塑性本構模型與實驗結果吻合。將此模型應用於扇出型晶圓級封裝之可靠度分析,模擬發現減少扇出型晶圓級封裝中重分佈層層數及減小矽晶尺寸可提升銅佈線可靠度,而矽晶厚度則需減小至0.1 mm才可明顯提升銅佈線之可靠度。

    Copper has been widely used in integrated circuit (IC) because of its excellent electrical and thermal properties. It is well known that the mechanical properties of Cu are affected by factors such as the dimension, grain size and method of deposition. This study investigated the mechanical constitutive behavior of Cu traces with 2-µm width and 2-µm spacing, which is the representative dimensions used in redistribution layer (RDL). From the experimental characterizations, it was shown that the Cu trace exhibits higher yielding stress than the Cu thin film of similar thickness does, and the value of elongation at rupture of the Cu trace is lower than that of the Cu thin film. By post-processing the experimental characterization results obtained in this study, the corresponding Anand viscoplastic model constants were estimated. The viscoplastic model was then implemented in finite element (FE) models to consider the risk of reliability failure of a fan-out wafer-level packaging (FOWLP) containing multi-layered RDL under board-level temperature cycling (T/C) test. From the simulation results it can be concluded that better T/C reliability can be achieved by decreasing Si die size and thickness, and that by decreasing the number of metal layers in the RDL improves the Cu trace reliability, but degrades the solder joint reliability.

    摘要 I Extended Abstract II 致謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 符號說明 XX 第一章 緒論 1 1.1前言與研究動機 1 1.2文獻回顧 4 1.3研究目的 7 1.4研究方法與流程 8 第二章 基本理論 10 2.1定應變率拉伸實驗本構行為 11 2.2統一黏塑性本構模型 12 2.3 Anand黏塑性本構模型 17 2.4 Anand模型參數擬合方法 19 2.5封裝熱循環可靠度模型 21 2.5.1重分佈層銅線及錫球之疲勞裂紋成長 22 2.5.2介電薄膜之裂紋成長 23 第三章 銅線本構行為量測 25 3.1銅線試件以及聚醯亞胺薄膜試件 25 3.2實驗設置及安裝流程 27 3.3實驗方法與條件 29 3.4定應變率拉伸實驗結果 30 3.4.1銅線試件 30 3.4.2聚醯亞胺薄膜試件 32 3.5銅線本構行為 35 第四章 銅線黏塑性本構模型 45 4.1 Anand模型參數求取 45 4.2 Anand模型驗證 50 4.2.1單一銅線拉伸模擬 50 4.2.2銅線試件拉伸模擬 53 第五章 板階熱循環疲勞行為模擬 57 5.1分析模型之建立 57 5.1.1幾何模型描述 57 5.1.2材料性質 63 5.1.3模型邊界條件 65 5.1.4溫度循環負載 67 5.2封裝可靠度分析 68 5.2.1銅佈線之可靠度影響評估 69 5.2.2錫球之可靠度影響評估 77 5.2.3介電薄膜之可靠度影響評估 81 第六章 結論與未來方向 87 6.1結論 87 6.2未來研究方向 88 參考文獻 89

    [1]J. H. Lau, “Cost analysis: solder bumped flip chip versus wire bonding,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 23, pp. 4-11, 2000.
    [2]C. C. Liu, S.-M. Chen, F.-W. Kuo, H.-N. Chen, E.-H. Yeh, C.-C. Hsieh, L.-H. Huang, M.-Y. Chiu, J. Yeh, and T.-S. Lin, “High-performance integrated fan-out wafer level packaging (InFO-WLP): Technology and system integration,” 2012 International Electron Devices Meeting, San Francisco, CA, Dec., pp. 14.1. 1-14.1. 4.
    [3]T. Braun, S. Voges, M. Töpper, M. Wilke, M. Wöhrmann, U. Maaß, M. Huhn, K.-F. Becker, S. Raatz, and J.-U. Kim, “Material and process trends for moving from FOWLP to FOPLP,” 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC), Singapore, Dec., pp. 1-6.
    [4]M.-F. Jhong, C.-H. Ho, W.-H. Lin, C.-Y. Huang, P.-C. Pan, and C.-C. Wang, “Ultra-slim package design for millimeter wave application,” 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Mie, April, pp. 38-41.
    [5]S. Zhang, M. Sakane, T. Nagasawa, and K. Kobayashi, “Mechanical properties of copper thin films used in electronic devices,” Procedia Engineering, vol. 10, pp. 1497-1502, 2011.
    [6]C. Neugebauer, “Tensile properties of thin, evaporated gold films,” Journal of Applied Physics, vol. 31, pp. 1096-1101, 1960.
    [7]R. Keller, J. Phelps, and D. Read, “Tensile and fracture behavior of free-standing copper films,” Materials Science and Engineering: A, vol. 214, pp. 42-52, 1996.
    [8]D. Y. Yu, and F. Spaepen, “The yield strength of thin copper films on Kapton,” Journal of Applied Physics, vol. 95, pp. 2991-2997, 2004.
    [9]E. Hall, “The deformation and ageing of mild steel: III discussion of results,” Proceedings of the Physical Society. Section B, vol. 64, pp. 747, 1951.
    [10]M. Merz, and S. Dahlgren, “Tensile strength and work hardening of ultrafine‐grained high‐purity copper,” Journal of Applied Physics, vol. 46, pp. 3235-3237, 1975.
    [11]T. Surholt, and C. Herzig, “Grain boundary self-diffusion in Cu polycrystals of different purity,” Acta materialia, vol. 45, pp. 3817-3823, 1997.
    [12]A. Zehe, “Prediction of electromigration-void formation in copper conductors based on the electron configuration of matrix and solute atoms,” Microelectronics Reliability, vol. 42, pp. 1849-1855, 2002.
    [13]A. Wimmer, M. Smolka, W. Heinz, T. Detzel, W. Robl, C. Motz, V. Eyert, E. Wimmer, F. Jahnel, and R. Treichler, “Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples,” Materials Science and Engineering: A, vol. 618, pp. 398-405, 2014.
    [14]Y.-B. Park, R. Mönig, and C. A. Volkert, “Thermal fatigue as a possible failure mechanism in copper interconnects,” Thin Solid Films, vol. 504, pp. 321-324, 2006.
    [15]D. T. Read, “Tension-tension fatigue of copper thin films,” International Journal of Fatigue, vol. 20, pp. 203-209, 1998.
    [16]G. Zhang, C. Volkert, R. Schwaiger, E. Arzt, and O. Kraft, “Damage behavior of 200-nm thin copper films under cyclic loading,” Journal of Materials research, vol. 20, pp. 201-207, 2005.
    [17]J. H. Park, J. H. An, Y. J. Kim, Y. H. Huh, and H. J. Lee, “Tensile and high cycle fatigue test of copper thin film,” Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, vol. 39, pp. 187-192, 2008.
    [18]N. Murata, K. Tamakawa, K. Suzuki, and H. Miura, “Fatigue strength of electroplated copper thin films under uni-axial stress,” Journal of Solid Mechanics and Materials Engineering, vol. 3, pp. 498-506, 2009.
    [19]O. Kraft, R. Schwaiger, and P. Wellner, “Fatigue in thin films: lifetime and damage formation,” Materials Science and Engineering: A, vol. 319, pp. 919-923, 2001.
    [20]Y. Xiang, X. Chen, and J. J. Vlassak, “The mechanical properties of electroplated Cu thin films measured by means of the bulge test technique,” MRS Online Proceedings Library Archive, vol. 695, 2001.
    [21]G. Zhang, R. Schwaiger, C. Volkert, and O. Kraft, “Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films,” Philosophical Magazine Letters, vol. 83, pp. 477-483, 2003.
    [22]X. Sun, C. Wang, J. Zhang, G. Liu, G. Zhang, X. Ding, G. Zhang, and J. Sun, “Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates,” Journal of Physics D: Applied Physics, vol. 41, pp. 195404, 2008.
    [23]D. Wang, C. Volkert, and O. Kraft, “Effect of length scale on fatigue life and damage formation in thin Cu films,” Materials Science and Engineering: A, vol. 493, pp. 267-273, 2008.
    [24]Y. Hwangbo, and J.-H. Song, “Fatigue life and plastic deformation behavior of electrodeposited copper thin films,” Materials Science and Engineering: A, vol. 527, pp. 2222-2232, 2010.
    [25]Y. Hwangbo, and J.-H. Song, “Plastic deformation behavior analysis of an electrodeposited copper thin film under fatigue loading,” International journal of fatigue, vol. 33, pp. 1175-1181, 2011.
    [26]L. Anand, “Constitutive equations for hot-working of metals,” International Journal of Plasticity, vol. 1, pp. 213-231, 1985.
    [27]S. Shih, M. Y. Lee, T.-W. Liao, D. Liu, M.-K. Shih, D. Tarng, and C. Hung, “Copper Trace Thermomechanical Reliability Analysis of Ball Grid Array Package,” 2018 13th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, Oct., pp. 58-61.
    [28]Y. Yamayose, T. Kugimiya, K. Hirohata, A. Happoya, N. Ohno, and M. Sakane, “Thermal fatigue life evaluation of substrate with Cu through-hole considering the mechanical properties of Cu thin film and glass fiber cloths structure,” Transactions of the JSME (in Japanese), vol. advpub, 2014.
    [29]R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction,” Journal of Electronic Packaging, vol. 124, pp. 147-154, 2002.
    [30]M. Variyam, T.-C. Chiu, V. Sundararaman, and D. Edwards, “Effect of package and board characteristics on solder joint reliability of microstar BGA,” Proceedings of the 53rd Electronic Components and Technology Conference, New Orleans, Louisiana, USA, May 2003, pp. 583-588.
    [31]“JEDEC Std. JESD22-A104-B”, Temperature Cycling, Jul. 2000.
    [32]D. Bhate, D. Chan, G. Subbarayan, T. C. Chiu, V. Gupta, and D. R. Edwards, “Constitutive behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu alloys at creep and low strain rate regimes,” IEEE Transactions on Components and Packaging Technologies, vol. 31, pp. 622-633, 2008.
    [33]F. Che, “Study on board level solder joint reliability for extreme large fan-out WLP under temperature cycling,” 2016 IEEE 18th Electronics Packaging Technology Conference (EPTC), Singapore, Dec., pp. 207-212.

    下載圖示 校內:2025-07-21公開
    校外:2025-07-21公開
    QR CODE