| 研究生: |
陳弘梅 Chen, Hung-Mei |
|---|---|
| 論文名稱: |
合成方沸石對鎳、錳、鉻、鍶離子吸附之研究 A study on the adsorption of Ni2+、Mn2+、Cr3+、Sr2+ by synthesized analcime |
| 指導教授: |
雷大同
Ray, Dah-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 合成方沸石 、離子交換 、吸附 、脫附 |
| 外文關鍵詞: | synthesized analcime, ion exchange, adsorption, desorption |
| 相關次數: | 點閱:116 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台東縣海端鄉利稻村西北方約2公里處,有蘊藏豐富的絹雲母礦,可開採量達一千五百萬噸,是台灣地區最具經濟價值的工業礦物原料之一。向陽絹雲母礦經水洗後粒徑細於400號篩,礦物組成以絹雲母及葉蠟石為主,屬絹雲母-葉蠟石-石英片岩型礦床。
本研究先將絹雲母原礦以沉降方式分級,所得<2 μm部分與4M之Na2SiO3溶液混合,固/液比為1/10,在250℃進行水熱反應4 hr,反應後產物為方沸石。以此合成之方沸石進行Ni2+、Mn2+、Cr3+及Sr2+之吸附實驗,利用原子吸收光譜儀分析吸附前後液體中離子濃度之變化,以探討方沸石對不同金屬離子之吸附行為、反應平衡時間、平衡濃度、吸附量、去除率及吸附機制等,依據實驗結果可得以下結論:
1.合成方沸石在0.01M之離子溶液中, Mn2+約10 hr達吸附反應平衡,Ni2+、Cr3+及Sr2+則約24 hr達反應平衡。
2.在不同離子濃度下,方沸石對Cr3+之吸附量最高,Ni2+、Mn2+及Sr2+則較低,但三者之吸附量差異不大。推測係因為Cr3+電價較高,故極性亦越高,置換性越強所致。
3.隨著金屬離子濃度增加,方沸石對離子之吸附量亦增加,Ni2+、Mn2+在0.001M、Sr2+在0.005M、Cr3+在0.01M左右達飽和吸附。
4.方沸石對離子之去除率隨離子濃度之增加而減少,係因方沸石量固定時,可供離子吸附之位址數亦固定,故當離子濃度提高時,溶液中離子數量遠大於方沸石中可供吸附之位址數量,故去除率隨之下降。同理,去除率隨固/液比增加而呈等比例增加,因固體量增加即表示可以交換的位址增多,可去除離子的量亦增多,故去除率隨之上升。
5.方沸石對Ni2+、Mn2+、Cr3+及Sr2+離子之吸附符合Langmuir等溫吸附模式,表示方沸石表面具有均勻且吸附能相同之位置,每一個吸附位址僅可吸附一個離子,呈單分子層吸附,且被吸附之離子間彼此沒有作用存在。
6.方沸石吸附溶液中之離子使其濃度減少,同時間溶液中Na+濃度增加,顯示方沸石是以離子交換之機制吸附溶液中之離子。但因Na+離子之總電荷小於吸附離子之總電荷,推測應有其他機制存在。
7.方沸石在ζ電位為負值時,吸附離子後(以Ni2+及Cr3+為例),其ζ電位絕對值減小,且吸附量越大,ζ電位絕對值越小,在Ni2+濃度≧0.01M及Cr3+濃度≧0.001M之溶液中,吸附達平衡後,ζ電位轉為正值,因此方沸石對溶液中金屬離子之吸附,應亦包含物理吸附機制。
8.離子之電價數與離子半徑大小與方沸石對離子之吸附與脫附性質有關,電價高,半徑小(0.62Å)之Cr3+離子吸附性高,但脫附性質接近零;二價離子之吸附性質依半徑由小至大之順序排列,即Ni2+ (0.69Å)>Mn2+ (0.83Å)> Sr2+ (1.18Å),脫附則反之。
A tremendous amount of sericite deposit is located 2 kilometers northwest of Li-dao Village, Hai-duan Borough, Taitung County. The recoverable amount is estimated to be about 15,000,000 tons. This sericite deposit belongs to a sericite-pyrophyllite-quartz schist-type deposits and is one of the most economically valued industrial minerals in Taiwan. After hydraulic classification, the particle size of finished sericite powder is smaller than 400 mesh. The major mineral compositions are sericite and pyrophyllite.
In this study, <2 μm parts of the saled sericite powder were separated by sedimentation and used in the synthesis of analcime via hydrothermal routes. In the hydrothermal synthesis, the mineralizer was 4M Na2SiO3, S/L ratio was 1/10 and the reactions were carried out at 250℃ for 4 hr.
The adsorption experiments of Ni2+, Mn2+, Cr3+ and Sr2+ on the synthesized analcime were performed. The adsorption behaviors were investigated by analyzing the ion concentration of solutions, using atomic absorption spectrometry, before and after each adsorption test. The factors detailedly studied were ion species, equilibrium time, ion concentration, adsorption amount, removal percentage and adsorption mechanism. The following conclusions can be drawn.
1.In solutions of 0.01M concentration, the times required for adsorption to reach equilibrium are for Mn2+ about 10 hr, and for Ni2+, Cr3+ and Sr2+ about 24 hr.
2.For varied ion concentrations, the adsorption of Cr3+ is always the largest, while Ni2+, Mn2+ and Sr2+are smaller and almost similar. This may be due to that Cr3+ has highest valence, so that the polarity is the highest and the replacement is the largest.
3.With the increasing of ion concentrations, the adsorption amount of Ni2+, Mn2+, Cr3+ and Sr2+ also increases. The adsorption becomes saturated for Ni2+ at 0.0001M, Mn2+ at 0.001M, Sr2+ at 0.005M, and Cr3+at 0.01M, respectively.
4.The ion removal percentage decreases with the increasing of ion concentrations. This is because the total adsorption sites are fixed for a limited amount of analcime. When the ion concentration increases, the total number of ions exceeds the total number of sites, eventually reduces the removal percentage. Similarly, with the increasing of S/L ratio, removal percentage increases proportionally. Because increasing the solids is equivalent to increasing the adsorption sites, so the removal percentage can be increased.
5.The adsorption behaviors of Ni2+, Mn2+, Cr3+ and Sr2+ conform to the Langmuir isotherm model. This means, the sites on the analcime surface are equivalent and have the same adsorption energy. Each adsorption site only adsorbs one ion (i.e. monolayer adsorption). There is no interaction between adsorbed ions.
6.The adsorption of Ni2+, Mn2+, Cr3+ and Sr2+, thus the reduction in concentrations of these ions, was accompanied by the increase of the Na+ concentration. This means, the removal of ions by analcime is via the mechanism of ion exchange. However, the total charge of Na+ is less than the total charge of adsorbed Mn+, suggesting that other mechanisms should also in exist.
7.In the range that the zeta potentials of analcime are negative, the adsorption of ions (e.g. Ni2+ and Cr3+) decreases the absolute value of zeta potential. The larger the adsorption, the smaller the absolute value of zeta potential becomes. For [Ni2+]≧0.01M and [Cr3+]≧0.001M, the zeta potential even changes to positive. Therefore the adsorption of ions on analcime must also be via the mechanism of physical adsorption.
8.The valence of ions and ionic radius are closely related to the adsorption and desorption behaviors of ions on analcime. The Cr3+ ion has the highest valence and smallest radius (0.62Å), it is found that Cr3+ is most strongly adsorbed, and the desorption is almost none. The adsorption of divalent ions are in the order of, from high to low, Ni2+(0.69Å) >Mn2+(0.83Å)>Sr2+(1.18Å). While the desorption is arranged reversely.
1.陳其瑞,“台東縣向陽雲母礦成因之初步研究,”經濟部中央地質調查所特刊3號,161~169頁,民國73年12月。
2.台灣地區雲母之利用需求與流向調查,經濟部礦業司,台灣礦業,47卷,4期,451~467頁,民國84年12月。
3.魏稽生及譚立平,台灣非金屬經濟礦物,經濟部中央地質調查所,141-150頁,民國88年12月。
4.經濟部礦務局網站-統計資料: http://www.mine.gov.tw/
5.U.S. Geological Survey, URL:http://www.usgs.gov/
6.陳勃怡,雷大同及蔡印來,“向陽絹雲母礦之礦物分佈及提選,”鑛冶,49卷,4期,137-142頁,民國94年12月。
7.Klein, C. and C.S. Hurlbut, Jr., “Manual of Minerals,” Revised 21st ed., John Wiley&Sons, Inc., New York, 2000.
8.Madhukar, B.B.L. and S.N.P. Srivastava, Mica and mica industry, A.A. Balkema, Rotterdam, 1995.
9.王明光,土壤環境礦物學,藝軒圖書出版社,台灣,2000年1月。
10.任磊夫,黏土礦物與黏土岩,地質出版社,北京市,1992年2月。
11.張振輝,向陽絹雲母礦中絹雲母及葉蠟石水熱改質研究,國立成功大學資源工程學系碩士論文,民國94年6月。
12.劉玉梅,向陽絹雲母礦中葉蠟石水熱合成方沸石之研究,國立成功大學資源工程學系碩士論文,民國95年6月。
13.何宗祐,向陽絹雲母水熱合成方沸石、氫氧鈣霞石及氫氧方鈉石之研究,國立成功大學資源工程學系碩士論文,民國97年6月。
14.何宗祐及雷大同,“向陽絹雲母水熱合成沸石之研究,”第九屆資源與環境學術研討會論文集,大漢技術學院主辦,花蓮,民國96年5月25日。
15.程石,湯中道及李少莉,“改性方沸石用於飲用水除氟的實驗研究,”非金屬礦,29卷,6期,39~41頁,2006年11月。
16.韓銀利,周惠康,余秋生及于艷青,“處理高氟水新礦物材料的試驗研究,”寧夏工程技術,6卷,4期,321~323頁,2007年12月。
17.陳方明及陸琦,“方沸石水質淨化劑的製備及其除氟研究,”環境工程學報,1卷,9期,31~34頁,2007年9月。
18.谷白云,孟長功及辛鋼,“鈉型方沸石與Cd2+的離子交換平衡研究,”石油化工,36卷,4期,402~406頁,2007年。
19.胡艷海,周曉磊及李曉云,“天然方沸石製備離子篩試驗研究,”非金屬礦,30卷,6期,23~25頁,2007年11月。
20.Dyer, A., T. Sudaporn and R. Kunwadee, “Exchange diffusion of Cu2+, Ni2+, Pb2+, Zn2+ into analcime synthesized from perlite,” Microporous and Mesoporous Materials, Vol.75, No.1, pp.273~279, 2004.
21.Sudaporn, T., R. Kunwadee and A. Dyer, “Ions exchange of Cu2+, Ni2+, Pb2+, Zn2+ in analcime (ANA) saynthesized from Thai perlite,” Microporous and Mesoporous Materials, Vol.79, No.1, pp.171~175, 2005.
22.Google Map: http://maps.google.com.tw/maps
23.趙杏媛及張有瑜,黏土礦物與黏土礦物分析,海洋出版社,北京,1990年5月。
24.Grim, R.E., Clay Mineralogy, McGraw-Hill, New York, 1953.
25.張仲民,普通土壤學,國立編譯館出版,台北市,民國77年。
26.張郇生,從雲母來認識黏土礦物—兼論黏土礦物在地質學中所佔之地位,地質,13卷,1期,57-80頁,民國82年。
27.Grim, R.E., “Physico-Chemical properties of soils: clay minerals,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.85, No.SM2, pp.1~17, 1959.
28.陳培源,劉德慶及黃怡禎,台灣之礦物,經濟部中央地質調查所,民國93年6月。
29.Cronstedt, A.F., ”Observation and description of an unknown kind of rock to be named zeolites,” Kongl Vetenskaps Academiens Handlingar Stockholm, Vol.17, pp.120-123, 1756.
30.蔡政鴻及陳惠芬,“沸石:礦物界的環保明星,”台灣博物,27卷,4期,74-77頁。
31.Meier, W.J. and D. Olson, Atlas of Zeolite Structure Types, Butterworths, London, 1992.
32.IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 31, pp.578, 1972.
33.Barrer, R.M., Hydrothermal Chemistry of Zeolites, Academic, 1982.
34.Ming, D.W. and F.A. Mumpton, Zeolites in soils: in Minerals in Soil Environments. 2nd ed., J.B. Dixon and S.B. Weed, eds., Soil Science Society of America, Madison, Wisconsin, 1989.
35.International Zeolite Association (IZA), URL: http://www.iza-online.org/
36.吳榮宗,工業觸媒概論,國興出版社,民國78年。
37.Dyer, A., Modern Theories of Ion Exchange and Ion Exchange Selectivity with Particular Reference to Zeolites. Inorganic Ion Exchangers in Chemical Analysis, CRC Press, pp.33~55, 1991.
38.唐扈祥,楊留方及吳興惠,“天然沸石及沸石類分子篩,”材料導報,18卷專輯Ⅱ,256~259頁,2004年4月。
39.申少華,張術根及王大偉,“天然沸石及其發展利用研究進展,”礦產保護及利用,4期,34~38頁,2000年8月。
40.Bish, D.L. and D.W. Ming, Natural Zeolites: Occurrence, Properties, Application, Mineralogical Society of America, 2001.
41.王明光,氧化物/層狀矽酸鹽之構造、特性、鑑定、反應、生成及用途,國立編譯館,台灣,民國98年9月。
42.劉鑫,劉福田,張寧及王冬至,“沸石負載納米TiO2光催化劑水處理研究進展,”矽酸鹽通報,25卷,6期,135~139頁,2006年12月。
43.張莉芬及劉瑞宏,“內蒙古特大型方沸石礦藏的綜合開發利用途徑,”中國礦業,9卷,1期,29~31頁,2000年。
44.Ackley, M.W., S.U. Rege and H. Saxena, “Application of natural zeolites in the purification and separation of gases,” Microporous and Mesoporous Materials, Vol.61, No.1, pp.25~42, 2003.
45.張壽庭,趙鵬大,陳建平,徐旃章及鄭明華,“天然沸石性能與陽離子組分之間的關係,”地球化學,30卷,5期,477~482頁,2001年9月。
46.李華興,張新明,李長洪,張方榮,盧維盛及劉遠金,“廣東省天然沸石的特性及其對土壤肥力的影響研究,”土壤與環境,5卷,4期,279~288頁,2002年12月。
47.Zorpas, A.A., D. Arapoglou and K. Panagiotis, “Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production,” Waste Management, Vol.23, pp.27~35, 2003.
48.王雪靜,高世揚,周建國及盧雁,“用天然斜髮沸石從西藏地熱水中分離提取K+、Rb+、Cs+的研究,”鹽湖研究,10卷,3期,31~37頁,2002年9月。
49.Tomasevic-Canovic, M., A. Dakovic, G. Rottinghaus, S. Matijasevic and M. Duricic, “Surfactant modified zeolites-new efficient adsorbents for mycotoxins,” Microporous and Mesoporous Materials, Vol.61, pp.173~180, 2003.
50.韓成,葉大年,魯安懷,姚光光,嚴永鑫,劉成國,唐軍利,朱桂珍及韓玉璞,“天然沸石在畜禽飼養及糞便污染治理中的應用研究,”岩石礦物學雜誌,18卷,4期,1999年。
51.蔣引珊,金為群,張軍及方送生,“TiO2/沸石複合物結構與光催化性能,”無機材料學報,17卷,6期,1301~1305頁,2002年11月。
52.嚴建華,租凡及馬平煥,“天然沸石抗菌劑及其在瓷磚中應用的研究,” 新型建築材料,11期,16~18頁,2001年。
53.陳養民,王香愛及李雅麗,“無磷助洗劑δ-層狀二矽酸鈉,”應用化工,35卷,4期,304~306頁,2006年4月。
54.李虎杰及易發成,“沸石對放射性核素Cs+、Sr2+的吸附阻滯作用,”礦物岩石,26卷,1期,5~8頁,2006年3月。
55.李全偉,張東及李帆,“沸石用於放射性廢樹脂水泥固化的試驗研究,”非金屬礦,28卷,5期,42~44頁,2005年9月。
56.Tricoli, V. and F. Nannetti, “Zeolite-Nafion composites as ion conducting membrane materials,” Electrochimica Acta, Vol.48, pp. 2625~2633, 2003.
57.Barrer, R.M. and R.P. Townsend, “Transition Metal Ion Exchange in Zeolites,” Journal of the Chemical Society. Faraday Transactions, Vol.72, No.1, pp.661~673, 1975.
58.Mondale, K.D., R.M. Carland and F.F. Aplan, “The Comparative Ion Exchange Capacities of Natural Sedimentary and Synthetic zeolite,” Minerals Engineering, Vol.8, No.4/5, pp.535~548, 1995.
59.Colella, C., “Ion exchange equilibria in zeolite minerals,” Mineralium deposita, Vol.36, pp.554~562, 1996.
60.Jha, V.K., M. Matsuda and M. Miyake, “Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+,” Journal of Hazardous Materials, Vol.160, No.1, pp.148~153, 2008.
61.Hui, S., C.Y.H. Chao and S.C. Kot, “Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycle coal fly ash,” Journal of Hazardous Materials, Vol.B127, pp.89~101, 2005.
62.Alvarez-Ayuso, E., A. Garcia-Sanchez and X. Querol, “Purification of metal electroplating waste waters using zeolites,” Water Research, Vol.37, No.20, pp.4855~4862, 2003.
63.Qiu, W. and Y. Zheng, “Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash,” Chemical Engineering Journal, Vol.145, No.3, pp.483~488, 2009.
64.Harland, C.E., Ion exchange Theory and Practice, Royal Society of Chemistry Paperbacks, 2nd ed, USA, 1994.
65.Yokomori, Y. and S. Idaka, “The crystal structure of analcime,” Microporous and Mesoporous Materials, Vol.21, pp.365~370, 1998.
66.Breck, D.W., “Crystalline molecular sieves,” Vol.41, No.12, pp.678~689, 1964.
67.徐如人,龐文琴及屠昆崗,沸石分子篩的結構與合成,吉林大學出版社,1987。
68.Zhdanov, S.P., “Some problems of zeolite crystallization,” 2nd International Conference Molecular Sieve Zeolites, pp.19~40, 1970.
69.Derouane, E.G., S. Determmerie, Z. Gabelica and N. Blom, “Synthesis and characterization of ZSM-5 type zeolites I. Physico-chemical properties of precursors and intermediates,” Applied Catalysis, Vol.1, pp.201-224, 1981.
70.Kacirek, H. and H. Lechert, “Investigations on the Growth of the Zeolite Type NaY,” Journal of Physical Chemistry, Vol.79, No.15, pp.1589~1593, 1975.
71.陳冠廷及雷大同,“古亭坑層泥岩水熱合成沸石之研究,”第九屆資源與環境學術研討會論文集,大漢技術學院主辦,花蓮,96年5月25日。
72.雷大同及傅建璋,“水庫淤泥水熱合成沸石之研究,”第十二屆海峽兩岸環境工程研討會,高雄第一科技大學環境與安全衛生工程系主辦,高雄,民國97年10月。
73.Garcia-Martinez, J., D. Cazorla-Amoros and A. Linares-Solano, “Selective synthesis of zeolite briquettes from conformed ashes,” Journal of chemical technology and biotechnology, Vol.77, No.3, pp.287-291, 2002.
74.陳方明,陸琦,于吉順,雷新榮及曹李靖,“方沸石的提純及其對含硫酸鹽的水的處理,”化工礦物與加工,33卷,11期,14~19頁,2004年。
75.陳方明,李兆華及陸琦,“鄂爾多斯盆地白堊系方沸石岩的發現及其對硫酸鹽水的處理,”礦物岩石地球化學通報,25卷,4期,339~342頁,2006年。
76.李光輝,“天然沸石在奶牛飼養業中的應用,”乳業科學與技術,27卷,2期,78~80頁,2004年。
77.才紹河,于洪福及范錫龍,“沸石飼料添加劑的應用與作用機理,”中國飼料,7期,1頁,2001年。
78.姜新福,孫向陽及關裕宓,“天然沸石在土壤改良和肥料生產中的應用研究進展,”草業科學,21卷,4期,48~51頁,2004年。
79.陳方明,陸琦,曹李靖及于吉順,“天然沸石的加工技術及其在水處理中的應用,”安全與環境工程,11卷,1期,19~22頁,2004。
80.陳方明、梅惠、李兆華、陸琦及于吉順,“多孔方沸石球對含氟水的處理,”中國非金屬礦工業導刊,5期,22~24頁,2007年。
81.陳方明,“方沸石的改性及其對硫酸鹽水的處理,”化工礦物與加工,38卷,9期,20~22頁,2009年。
82.Orlov, D.S., Soil Chemistry, A.A. Balkema, pp.96~98, 1992.
83.Drew, M., Surfaces, interfaces, and colloids: principles and applications, 2nd ed. Wiley-VCH, 1999.
84.Shaw D.J., Introduction to Colloid and Surface Chemistry, 4th ed., Butterworths, 1992.
85.Smith, J. M., Chemical Engineering Kinetics, McGraw-Hill, New York, 1970.
86.盧壽慈及翁達,界面分選原理及應用,冶金工業出版社,北京,104~105頁,1992年。
87.姚壽山,李戈揚及胡文彬,表面科學與技術,普通高等教育材料科學與工程專業規劃教材,機械工業出版社,北京,2005年。
88.Osipow, L.I., Surface Chemistry Theory and Industrial Application, Robert E. Krieger Pub.,1972.
89.Hunter, R.J., Introduction to Modern Colloid Science, Oxford University Press, 1993.
90.Adamson, A.W., Physical Chemistry of Surfaces, 5th ed. John Wiley & Sons, 1990.
91.孫衛玲及倪普仁,“泥沙吸附重金屬研究中的若干關鍵問題,”泥沙研究,6期,2002年。
92.Chu, K.H. and M.A. Hashim, “Adsorption of copper(II) and EDTA-chelated copper(II) onto granular activated carbons,” Journal of Chemical Technology and Biotechnology, Vol.75, pp. 1054~1060, 2000.
93.Ouki, S.K. and M. Kavannagh, “Performance of Natural Zeolites for the Treatment of Mixed Metal-contaminated effluents,” Waste Management & Research, Vol.15, pp.383~394, 1997.