| 研究生: |
康洛瑋 Kang, Luo-Wei |
|---|---|
| 論文名稱: |
納入時空交互作用對共享自行車需求的影響─以台南T-Bike為例 The Impact of Combining the Spatio-Temporal Interaction on the Bike Sharing System Demand:A Case Study of Tainan T-Bike |
| 指導教授: |
沈宗緯
Shen, Tsung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 共享自行車系統 、面板數據 、空間滯後模型 、空間誤差模型 、土地利用和建成環境變數 |
| 外文關鍵詞: | Bicycle-sharing systems, Panel data, Spatial lag model, Spatial error model, Land use and built environment variables |
| 相關次數: | 點閱:91 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著近年來共享自行車系統的快速發展,影響借還次數的因素為何及影響程度的大小是一重要課題。過去的研究指出,除了外生變數的考量(例如:天氣、時間或建成環境變數等)外,還應充分考慮共享自行車系統的時空交互作用。
本研究依循Faghih-Imani and Eluru (2016) 對紐約共享自行車系統需求之研究,以台南市共享自行車系統T-bike為例,分析時空交互作用帶來之影響。研究使用空間面板數據估計時空交互作用,除採用空間滯後及空間誤差兩種空間作用之模型外,也針對某個站點某小時借還車數是否受前一小時、前一天同一小時及上週同一小時借還車數的影響 (此為時間滯後因子),以及某個站點某小時的借還車數是否受鄰近站點前一小時、前一天同一小時與上周同一小時的借還車數影響(此為時空滯後因子)進行分析。
研究結果顯示T-Bike站點間的使用情況具有時空交互作用,除了相鄰站點之借還車會受觀測站本身之借還車影響外,觀測站本身也會受本身站點與最鄰近站點前時間段之借還車影響,其中本身站點前時間段帶來的影響是以前一週同一小時借還車的影響最大,最鄰近站點前時間段帶來的影響則是前一小時借還車的影響最大,可從中看出T-Bike的使用模式存在的規律性,此外在分析結果中發現了影響共享自行車需求的重要因素(時段、火車站等),綜合以上模型分析的結果,我們建議可以利用觀察出的使用模式,針對不同卡別之使用者提出不同的行銷方式,像是可對悠遊卡會員在週末時提供景點周邊T-Bike站點的使用優惠等又或是針對火車站附近的道路規劃提出改善(建置自行車道、自行車交通號誌等)以促進民眾對於此系統的需求。
With the rapid development of bicycle-sharing systems (BSSs) in recent decades, many studies have been aimed toward determining the factors that affect the demand for BSSs. Past studies have pointed out that in addition to consideration of exogenous variables (such as weather, time, or built environment variables, etc.), the spatio-temporal interactions of BSSs should also be fully considered. For this reason, our research incorporates spatio-temporal interaction into the model building process.
In the present study, a spatial panel model is used to estimate spatio-temporal effects (including observed and unobserved) in order to analyze the data for Tainan City’s BSS (T-Bike). In addition, temporally lagged dependent variables and temporally and spatially lagged dependent variables are added. For example, the bike borrowing/returning rate in a specific time period for the station under observation may be affected by the bike borrowing/returning rate in the previous period for that station as well as neighboring stations. Ignoring the existence of these effects may lead to estimation errors in the model.
The research results provide strong evidence that T-Bike usage has a positive dependency and that there is also temporal and spatial interaction between BSS site borrowing and returning patterns. In addition, factors contributing to the demand for BSS were also found. A summary of the analytical results is provided; some reasonable explanations for the results are given, and reference suggestions for the future development and planning of the BSS are made. In addition, the results of the comparison between the models will also be provided to scholars who need to use the spatial panel model for analysis in the future as a reference.
Bakó, B., Berezvai, Z., Isztin, P. and Vigh, E. Z. (2020). Does Uber affect bicycle-sharing usage? Evidence from a natural experiment in Budapest. Transportation Research Part A: Policy and Practice, 133, 290-302.
Bauman, A., Crane, M., Drayton, B. A. and Titze, S. (2017). The unrealised potential of bike share schemes to influence population physical activity levels–A narrative review. Preventive medicine, 103, S7-S14.
Buck, D. and Buehler, R. (2012). Bike lanes and other determinants of capital bikeshare trips. Paper presented at the 91st Transportation research board annual meeting.
Campbell, A. A., Cherry, C. R., Ryerson, M. S. and Yang, X. (2016). Factors influencing the choice of shared bicycles and shared electric bikes in Beijing. Transportation research part C: emerging technologies, 67, 399-414.
Chakrabarti, A. and Ghosh, J. K. (2011). AIC, BIC and recent advances in model selection. Philosophy of Statistics, 583-605.
Chibwe, J., Heydari, S., Imani, A. F. and Scurtu, A. (2021). An exploratory analysis of the trend in the demand for the London bike-sharing system: From London Olympics to Covid-19 pandemic. Sustainable Cities and Society, 69, 102871.
DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal of public transportation, 12(4), 3.
Elhorst, J. P. (2011). Spatial panel models. York, UK: The University of York.
Elhorst, J. P. (2014a). Spatial econometrics: from cross-sectional data to spatial panels (Vol. 479): Springer.
Elhorst, J. P. (2014b). Spatial panel data models. In Spatial econometrics (pp. 37-93): Springer.
Eren, E. and Uz, V. E. (2020). A review on bike-sharing: The factors affecting bike-sharing demand. Sustainable Cities and Society, 54, 101882.
Faghih-Imani, A. and Eluru, N. (2016). Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system. Journal of Transport Geography, 54, 218-227.
Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M. and Haq, U. (2014). How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41, 306-314.
Fishman, E. (2016). Bikeshare: A review of recent literature. Transport Reviews, 36(1), 92-113.
Fotheringham, A. S. and Rogerson, P. A. (2008). The SAGE handbook of spatial analysis: Sage.
Gebhart, K. and Noland, R. B. (2014). The impact of weather conditions on bikeshare trips in Washington, DC. Transportation, 41(6), 1205-1225.
Gelfand, A. E., Diggle, P., Guttorp, P. and Fuentes, M. (2010). Handbook of spatial statistics: CRC press.
Guliyev, H. (2020). Determining the spatial effects of COVID-19 using the spatial panel data model. Spatial statistics, 100443.
Guzman, L. A. and Cardona, S. G. (2021). Density-oriented public transport corridors: Decoding their influence on BRT ridership at station-level and time-slot in Bogotá. Cities, 110, 103071.
Hsiao, C. (2005). Why panel data? University of Southern California. Retrieved from
Imani, A. F. and Eluru, N. (2014). Role of bicycle sharing system infrastructure on usage: evidence from Montreal. Paper presented at the 5th Innovations in Travel Modeling Conference.
Li, W. and Kamargianni, M. (2018). Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China. Transportation Research Part A: Policy and Practice, 111, 277-291.
Ma, X., Yuan, Y., Van Oort, N. and Hoogendoorn, S. (2020). Bike-sharing systems’ impact on modal shift: A case study in Delft, the Netherlands. Journal of Cleaner Production, 259, 120846.
Maas, S., Nikolaou, P., Attard, M. and Dimitriou, L. (2021). Examining spatio-temporal trip patterns of bicycle sharing systems in Southern European island cities. Research in Transportation Economics, 86, 100992.
Malekzadeh, A. and Esmaeli-Ayan, A. (2021). An exact method for testing equality of several groups in panel data models. Statistics & Probability Letters, 109156.
Márquez, H. R. G., Bracho, R. L. and Ramirez-Nafarrate, A. (2021). A Simulation-Optimization Study of the Inventory of a Bike-Sharing System: The Case of Mexico City Ecobici’s System. Case Studies on Transport Policy.
Monsere, C. M., McNeil, N. and Dill, J. (2012). Multiuser perspectives on separated, on-street bicycle infrastructure. Transportation Research Record, 2314(1), 22-30.
Murphy, E. and Usher, J. (2015). The role of bicycle-sharing in the city: Analysis of the Irish experience. International Journal of Sustainable Transportation, 9(2), 116-125.
Nigro, A., Bertolini, L. and Moccia, F. D. (2019). Land use and public transport integration in small cities and towns: Assessment methodology and application. Journal of Transport Geography, 74, 110-124.
O’brien, O., Cheshire, J. and Batty, M. (2014). Mining bicycle sharing data for generating insights into sustainable transport systems. Journal of Transport Geography, 34, 262-273.
Patel, S. J., Patel, C. R. and Joshi, G. (2020). Planning of Public Bicycle (Bike) Sharing System (PBSS): A Case Study of Surat City. Transportation Research Procedia, 48, 2251-2261.
Pesaran, H. (2004). General diagnostic tests for cross-sectional dependence in panels. University of Cambridge, Cambridge Working Papers in Economics, 435.
Richter, F. (2018). Bike-sharing clicks into higher gear. In.
Rixey, R. A. (2013). Station-level forecasting of bikesharing ridership: Station Network Effects in Three US Systems. Transportation Research Record, 2387(1), 46-55.
Shaheen, S. A., Guzman, S. and Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia: past, present, and future. Transportation Research Record, 2143(1), 159-167.
Sun, S., Wang, B. and Li, A. (2020). Shared bicycle study to help reduce carbon emissions in Beijing. Energy Reports, 6, 837-849.
Wang, H., Du, Z., Wang, X., Liu, Y., Yuan, Z., Liu, Y. and Xue, F. (2015). Detecting the association between meteorological factors and hand, foot, and mouth disease using spatial panel data models. International Journal of Infectious Diseases, 34, 66-70.
Yufei, H., Oukhellou, L. and Come, E. (2014). Towards bicycle demand prediction of large-scale bicycle sharing system.