簡易檢索 / 詳目顯示

研究生: 黃佳炫
Huang, Jix-Xuan
論文名稱: 使用多重定址技術發展一具備網路容錯及負載平衡之監視系統
A Multihome-based Surveillance System with Fault Tolerance and Load Balancing Capabilities
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 54
中文關鍵詞: 負載平衡網路容錯監視系統
外文關鍵詞: load balance, multihomed, NeTSurv, surveillance system, Network fault tolerance
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前的監視系統以漸漸從類比走向數位化, 而隨著網際網路的發展,無線以及寬頻網路的普及,這樣的發展也使得使用者端可以透過建置的網路,可無時無刻的連上監視系統,也就是說可以經由遠端而連接上監視系統;然而,以網路為媒介的網路攝影機,也有其叫人詬病的地方,就是其連線上網路可靠度的問題,也就是說對於一個IP-based的監視系統而言,網路的可靠度成為一個很重要的議題;當使用者遇到網路連線出現問題時,使用者將不能透過網路來存取網路攝影機,或備份伺服器上的資料。因此在本篇論文中,提出一個具有網路容錯以及負載平衡的監視系統。針點監視系統在網路容錯的方面,提出了兩階段的解決方式,並採用了multihome-based的方法來改善網路容錯的能力;並且延續了multihome-based的方法,來解決網路負載的問題,將網路的流量平均分攤到各個連線上,如此一來即能避免單一連線上擁塞的問題,使用者也能得到較好的觀看品質,而減少擁塞的情況。

    Current video surveillance systems are becoming digitalized and IP-based. With the developments of Internet, wireless and broadband networks, it is possible for a surveillance system client to
    ubiquitously access the surveillance system, i.e., to view the surveillance video and control the system remotely. However, one critical disadvantage of the IP-based surveillance is the network reliability problem. That is, since the IP-based surveillance system is IP-based, all of the services provided by the IP-based surveillance system will not be accessible at all if network failure occurs. In this paper, a network-fault-tolerable IP-based surveillance (NeTSurv) system is proposed. In addition to the existing features of current video surveillance systems, a multihome-based approach is adopted to improve the network fault tolerance capability of the NeTSurv system. Two-level fault
    tolerance mechanisms are developed to solve the connectivity issue and the continuity issue of video playout for different link failure scenarios. Furthermore, a load balance mechanism is also devised for the NeTSurv system to distribute the load across multiple links.
    Using the load balance mechanism, congestion of a single link can be prevented when multiple clients request surveillance video through
    Internet at the same time.

    1 Introduction..............................................................1 2 Survey of Related Works...................................................4 2.1 Related Works of Surveillance Systems.................................4 2.2 Preliminary of Multihoming............................................5 3 User Behavior Model.......................................................8 4 System Architecture and Functional Flow..................................10 4.1 Main Components......................................................11 4.2 System Functional Flow...............................................15 5 Dual-Multihomed Networking and Robust Fault Tolerance....................17 5.1 Investigation of link failure scenarios..............................17 5.2 Dual-Multihomed Networking...........................................18 5.3 Implementing Two-Level Fault Tolerance...............................19 6 Link Load Balance for Multiple Surveillance Video Streams................26 7 System Implementation Issues.............................................29 7.1 Multihomed Network...................................................29 7.2 IPv6 Support of Microsoft Windows....................................31 7.3 User-Friendly Installation of Modules................................32 8 Performance Analysis.....................................................33 8.1 Experimental Environment.............................................34 8.2 Evaluation on Level-1 Fault Tolerance................................34 8.3 Evaluation on Level-2 Fault Tolerance................................36 8.4 Evaluation on Link Load Balance......................................41 9 Practical Usages and Applications........................................43 10 Discussion and Conclusion...............................................45 A Fault Tolernace..........................................................49 B Load Balance.............................................................51

    [1] The IETF IPv6 Multihoming Working Group.
    http://www.ietf.org/html.charters/multi6-charter.html.

    [2] Fong, A. C. M. and Hui, S. C., "Web-based intelligent surveillance system
    for detection of criminal activities," Computing & Control Engineering
    Journal, VOL 12, No.6, pp. 263-270, Dec. 2001.

    [3] Piva, S., Calbi, A., Angiati, D., and Regazzoni, C.S., "A multi-feature
    object association framework for overlapped field of view multi-camera
    video surveillance systems," Proceedings of the IEEE Conference on
    Advanced Video and Signal Based Surveillance, pp. 505-510, Sept. 2005.

    [4] Guha, P., Palai, D., Goswami, D., and Mukerjee, A.,"DynaTracker: Target
    tracking in active video surveillance systems,"Proceedings of the 12th
    International Conference on Advanced Robotics, ICAR '05, pp. 621-627, July
    2005.

    [5] Jianfeng Peng, Lizhi Yang, Momen, F., and Rozenblit, J. W., "Level-of
    detail based modeling of object movement in tracking and surveillance
    system,"Proceedings of the Winter Simulation Conference, pp.461-466, Dec.
    2005.

    [6] Hongshan Yu, Yaonan Wang, and Fei Kuang, "Qin Wan; Multi-moving targets
    detecting and tracking in a surveillance system,"Proceedings of the 5th
    World Congress on Intelligent Control and Automation (WCICA 2004), VOL 6,
    pp. 5253-5257, June 2004.

    [7] Alsaqre, F. E. and Yuan Baozong, "Multiple moving objects tracking for
    video surveillance systems," Proceedings of the 7th International
    Conference on Signal Processing (ICSP '04), VOL 2, pp. 1301-1305, Aug. 2004.

    [8] Jahangir, S., Tanveer, N., Ahmad, M., and Khan, S. A., "Networked
    Surveillance System Using Object-Centric Motion-Based Tracking and
    Classification," Proceedings of the Student Conference On Engineering,
    Sciences and Technology, pp. 106-111, Dec. 2004.

    [9] Muller-Schneiders, S., Jager, T., Loos, H.S., and Niem, W., "Performance
    evaluation of a real time video surveillance system," Proceedings of the
    2nd Joint IEEE International Workshop on Visual Surveillance and Performance
    Evaluation of Tracking and Surveillance, pp. 137-143, Oct. 2005.

    [10] Hung-Son Le and Haibo Li, "Can the Surveillance System Run Pose Variant
    Face Recognition in Real Time?" Proceedings of the 2nd Joint IEEE
    International Workshop on Visual Surveillance and Performance Evaluation of
    Tracking and Surveillance, pp. 209-216, Oct. 2005.

    [11] Ishii, Y., Hongo, H., Yamamoto, K., and Niwa, Y., "Face and head detection
    for a real-time surveillance system," Proceedings of the 17th International
    Conference on Pattern Recognition (ICPR '04), Vol. 3, pp. 298-301, Aug. 2004.

    [12] Bovyrin, A. and Rodyushkin, K., "Human height prediction and roads estimation
    for advanced video surveillance systems," Proceedings of the IEEE Conference
    on Advanced Video and Signal Based Surveillance, pp. 219-223, Sept. 2005.

    [13] Zhaoyu Liu, Dichao Peng, Yuliang Zheng, and Liu, J., "Communication protection
    in IP-based video surveillance systems," Proceedings of the 7th IEEE
    International Symposium on Multimedia, pp. 69-78 , Dec. 2005.

    [14] Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut Schwabach,
    "Improving Fault-Tolerance in Intelligent Video Surveillance by Monitoring
    Diagnosis and Dynamic Reconfiguration, "Proceedings of the 3rd Workshop on
    Intelligent Solutions in Embedded Systems (WISES '05), pp. 194-201, May 2005.

    [15] Chung-Ming Huang, Ching-Hsien Tsai, and Po-Chou Su, "MultiGate6: An IPv6
    Multihoming Gateway Using a Hybrid Approach," Computer Communications, VOL 29,
    No. 10, pp. 1842-1857,2006.

    [16] Iperf
    http://dast.nlanr.net/Projects/Iperf/.

    [17] ietimeout
    http://www.simplefailover.com/outbox/ietimeout-se.exe.

    下載圖示 校內:2009-07-26公開
    校外:2011-07-26公開
    QR CODE