簡易檢索 / 詳目顯示

研究生: 張晏韶
Chang, Yen-Shao
論文名稱: 以微波加熱燃燒合成法製備異質摻雜CeO2固溶體粉末應用於固體氧化物燃料電池中固態電解質之研究
指導教授: 溫紹炳
Wen, Shaw-Ben
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 63
中文關鍵詞: 固體氧化物燃料電池固態電解質微波加熱燃燒合成法GdxCe1-xO2-x/2
外文關鍵詞: Solid Electrolyte, GdxCe1-xO2-x/2, Solid Oxide Fuel Cell, Microwave-induced Combustion Synthesis.
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   固態電解質為高氧離子導電率的導體,利用晶粒本身性質,藉由晶粒中氧空缺來傳導氧離子,螢石結構(Fluorite Structure)為具有高氧離子導電率的結晶構造,純的CeO2從室溫至熔點皆為穩定的螢石結構,不需進行穩定化,摻雜異價陽離子,以增加氧空缺,提高氧離子導電率,具有比現行商業化的氧化釔安定化氧化鋯(YSZ)固態電解質還要高的離子導電率以及較低的活化能,極有希望成為固體氧化物燃料電池(Solid Oxide Fuel Cell,SOFC)的電解質材料。
      本研究以微波加熱燃燒合成法製備GdxCe1-xO2-x/2粉末,經過加壓成型、燒結後作為固態電解質,利用XRD、SEM、BET,針對不同添加比例,分析粉末及燒結體的結晶相、顯微結構、緻密度,以及使用直流電法(DC-method)量測其導電率。
      微波加熱燃燒合成法是以硝酸鈰、硝酸釓為氧化劑,尿素當還原劑,先配製成溶液的形式,再以微波加熱以引燃溶液,燃燒結束後反應便完成,可得到多孔性且蓬鬆的GdxCe1-xO2-x/2粉體,整個反應在極短時間內便可完成。經XRD的結果證實,在添加Gd3+比例範圍內(0<x<0.24)為單一相且完全固溶的螢石結構粉末,其粒徑大小約為10~20nm。
      以Gd3+摻雜CeO2固態電解質,可有效提高氧離子導電率,900℃時導電率由7.37×10-4S/cm (CeO2) 提高到2.8×10-2S/cm(Ce0.8Gd0.2O1.9) 且隨著添加量的增加,氧空缺濃度增加,導電率也增加,但當添加比例超過x=0.2時,導電率並沒有跟著增加,其原因是因為氧離子空位的有序化,缺陷締合以及靜電相互作用所造成的。活化能隨著添加比例增加而降低,在x=0.2活化能為0.0869(eV),繼續增加會使活化能升高,可與導電率結果作對照。

      The Solid electrolyte is a conductor of the high oxygen ionic conductivity. It uses the nature from crystalline grain itself, as well as the oxygen vacancy inside to conduct oxygen ions. Fluorite Structure is a crystal conformation with high oxygen ionic conductivity. The pure CeO2 is stable Fluorite Structure both under the room temperature and melting point, so it is not necessary to stabilize and add unsual valence cation to increase the oxygen vacancy and increase oxygen ion electric conductivity. Besides, as compared to the current commercial YSZ (Yttria Stabilized Zirconia) solid electrolyte, it has higher ionic conductivity and lower active energy; therefore, it’s very possible that doped CeO2 could become the electrolyte material of solid oxide Fuel Cell (SOFC).
      In this research, firstly, we adopted the method of “Microwave-induced Combustion Synthesis” to produce GdxCel-xO2-x/2 powder. Secondly, after pressurizing to form its shape, and sintering, it would become solid electrolyte. Then, we used XRD, SEM, BET, in accordance with different adding proportion, and analyzed powder, the crystal phase of sintered substances, microstructure, and fineness In addition, we also used DC-method to measure its ionic conductivity.
      The method of “Microwave-induced Combustion Synthesis” is that we use Cerium Nitrate and Gadolinium Nitrate as the oxidizer and urea as reducing agent, to compound to the form of liquid, and then heat it up by microwave, in order to kindle the liquid. After finishing kindling, the reaction is completed. We therefore could get powder with porosity and fluffiness. The whole reaction can be finished in an extremely short time. The GdxCel-xO2-x/2 we get by using the above method shows a result of XRD: In the range of adding Gd3+ proportion(0<x<0.24), the powder belong to single phase and Fluorite Structure which is complete solid solution. The diameter of each powder is about 10 to 20nm.
      By adding Gd3+ to CeO2 solid electrolytes could effectively increase the oxygen ion electric conductivity. When the temperature reaches 900℃, the electric conductivity can increase from 7.37×10-4S/cm (CeO2) to 2.8×10-2S/cm(Ce0.8Gd0.2O1.9). With the increase of adding amount, the concentration of oxygen vacancy would increase, as well as the ionic conductivity. However, if the adding proportion exceeds x=0.2, the ionic conductivity will not increase. The reason is because the vacancy of oxygen ion is formed by functioning between ordering, flaw association, and static electricity. The activation energy would be reduced by the increase of adding proportion. When x=0.2, the active energy will be 0.0869(eV), and if keeping increasing, the active energy would also increase. The result can be a comparison of the result of electric conductivity.

    總目錄 摘要..............................................I Abstract........................................III 誌謝..............................................V 總目錄..........................................VII 表目錄............................................X 圖目錄...........................................XI 第1章 緒論........................................1 1-1前言...........................................1 1-2 燃料電池簡介..................................2 1-2-1 燃料電池的歷史..............................2 1-2-2 燃料電池的特點..............................3 1-2 研究動機與目的................................4 1-3 前人研究......................................6 第2章 理論基礎....................................8 2-1燃料電池的原理.................................8 2-1-1 燃料電池的分類及應用範圍....................8 2-2 固體氧化物燃料電池原理及特點.................11 2-2-1 固體氧化物燃料電池的構造及材料選擇.........11 2-2-1 固體氧化物燃料電池的特點:..................12 2-3 固態電解質...................................13 2-3-1 螢石結構...................................13 2-3-2 鈣鈦礦結構.................................16 2-4 燃燒合成法原理...............................17 2-4-1 高溫自行燃燒合成法.........................17 2-4-2 低溫燃燒合成法.............................18 2-4-3 硝酸鹽與有機燃料配比之計算.................20 2-5 微波加熱理論.................................21 第3章 實驗步驟及方法.............................23 3-1 GdxCe1-xO2-x/2粉末的合成.....................23 3-1-1 X光繞射分析(X-ray diffraction analysis,XRD) .................................................26 3-1-2 顯微結構分析(SEM)..........................26 3-1-3 比表面積測定(BET)..........................27 3-2 GdxCe1-xO2-x/2試片的成型與燒結...............27 3-2-1 導電率分析.................................27 3-2-2 活化能分析.................................28 3-2-3 顯微結構分析...............................29 3-2-4 燒結密度分析...............................29 第4章 結果與討論.................................31 4-1 合成粉末與燒結體之性質分析結果...............31 4-1-1 GdxCe1-xO2-x/2粉末的X光繞射分析............31 4-1-2 GdxCe1-xO2-x/2粉末比表面積分析結果.........34 4-1-3 GdxCe1-xO2-x/2粉末的燒結體表面X光繞射分析..35 4-2 GdxCe1-xO2-x/2粉末及燒結體的顯微結構分析.....38 4-2-1 GdxCe1-xO2-x/2粉末的顯微結構分析...........38 4-2-2 GdxCe1-xO2-x/2燒結體的顯微結構分析.........40 4-3導電性質分析..................................45 4-5活化能分析....................................48 4-6燒結密度......................................57 第5章 結論與建議.................................59 參考文獻.........................................60

    . 黃鎮江,“燃料電池”,全華科技圖書股份有限公司 (2003)
    . Minh N. Q., T. Takahashi, “Science and Technology of Ceramic Fuel Cells”, Elsevier Science B. V., (1995)
    . Appleby A. J. and F. R. Foulkes, “Fuel cell hand book”, Van Nostrand Reinhold, (1989)
    . Gregor H., “Fuel cell technology hand book”, CRC Press, (2002)
    . Geller S., “Solid Electrolytes”, Springer-Verlag, (1977)
    . Hagenmuller P. and W. V. Cool, “Solid electrolytes general principles, characterization, materials, applications”, Academic Press, (1978)
    . Inaba H. and Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, 83, 1~16, (1996)
    . Yahiro H., T. Ohuchi and K. Eguchi, “Electrial properties and mircostructure in the system ceria-alkaline earth oxide”, Journal of Materials Science, 23, 1036~1041, (1988)
    . 殷聲,“燃燒合成”,冶金工業出版社 (1999)
    . 傅戈妍、崔得良、龐廣生,“微波固相法合成鈉快離子導體Na5YSi4O12”,高等學校化學學報,17,672~675,(1996)
    . 馮守華、龐廣生、徐如人,“微波誘導合成固體快離子導電材料”,高等學校化學學報,17,1495~1499,(1996)
    . Kiminami R. H. G. A., M. R. Morelli, D. C. Folz and D. E. Clark, “Microwave synthesis of alumina powders”, Am. Ceram. Soc. Bull., 79, 63~67, (2000)
    Dabing L., H. Jiandong and L. Jianshe, “Synthesis of nanometer (CeO2)0.9-x(GdO1.5)x(Sm2O3)0.1 powders by sol-gel low temperature combustion”, Journal of the Chinese Ceramic Society, 29, 340~343, (2001)
    . Yen-Pei Fu and L. Cheng-Hsiung, “Preparation of CexZr1-xO2 powders by microwave-induced combustion process”, Journal of Alloys and Compounds, 354, 232~235, (2003)
    . 傅彥培,“以微波誘導燃燒法製備磁性氧化物粉體之研究”,國立清華大學材料科學工程學系博士論文,(2003)
    . 黃銘賢,“以Doped CeO2為固態電解質的陶瓷燃料電池”,國科會研究計畫報告, (2001)
    . Sammes N. M., G. A. Tompsett, H. Näfe and F. Aldinget, “Bismuth based oxide electrolytes structure and ionic conductivity”, Journal of the European Ceramic Society, 19, 1801~1826, (1999)
    . Kai J. and P. Cheng, “Sol-Gel synthesis and porperties of GdxCe1-xO2-x/2 solid solutions”, Chemical Journal of Chinese Universities, 22, 1279~1282, (2001)
    . Kai J. and Z. Xiuying, “Solid electrolytes used for SOFC”, Chinese Journal of Rare Metals, 25, 121~125, (2001)
    . Cook. R. L., “Perovskite solid electrolytes for intermediate temperature solid oxide fuel cells”, Journal of the Electrochemistry Society, 137, 3309~3310, (1990)
    . 黃冠棟,“低溫燃燒合成的基礎探討和應用與負溫度係數熱敏電阻的製程改良”,國立中正大學化學工程系碩士論文,(2001)
    . Kingsley J. J. and K. C. Patil, “Novel combustion Process for the synthesis of fine particle alpha-alumina and related oxide materials”, Materials Letters, 6, 427, (1988)
    . Fumo D. A., J. R. Jurado, A. M. Segadaes and J. R. Frade, “Coumbustion synthesis of iron-substituted strontium titanate perovskites”, Materials Research Bulletin, 32, 1459, (1997)
    . 陳熹棣編譯,“高週波基礎理論與應用/淬火、微波加熱、電漿、超音波加工”,全華科技圖書股份有限公司 (1995)
    . Kingston H. M. and L. B. Jassie “Introduction to Microwave Sample Preparation Theory and Practice”, Oxford University Press, (1988)
    Shaowu Z., “Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells”, Journal of Power Sources, 115, 44~48, (2003)
    . Christie G. M. and F. P. F Van Berkel, “Microstructure-ionic conductivity relationships in ceria-gadolinia electrolytes”, Solid State Ionics, 83, 17~27, (1996)
    . Inaba H., “Sintering behaviors of ceria and gadolinia-doped ceria”, Solid State Ionics, 106, 263~268, (1998)
    . 劉旭俐、馬峻峰,“固體氧化物燃料電池材料的研究進展”,硅酸鹽通報,1,24~29,(2001)
    . 任引哲,“稀土複合氧化物的電導及在SOFC中的應用”,化學研究,12,59~64,(2001)
    . Dixon J. M. and L. D. Lagrange, “Electrical resistivity of stabilized zirconia of elevated temperatures”, Journal of the Electrochemistry Society, 110, 276~280, (1963)
    . Strickler D. W. and W. G. Carlson, “Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2”, Journal of the American Ceramic Society, 47, 122~127, (1964)
    . 尹邦躍,“奈米時代”,五南圖書出版股份有限公司 (2002)

    下載圖示 校內:2005-07-08公開
    校外:2005-07-08公開
    QR CODE