| 研究生: |
莊惠中 Zhuang, Hui-Zhong |
|---|---|
| 論文名稱: |
原位法製備具協同抗菌效果之銀/氧化鋅複合明膠奈米膠 Gelatin composite nanogels comprised of in-situ formed zinc oxide and silver nanoparticles with synergistic effect on antibacterial activity |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 抗菌 、酵素降解 、協同抗菌效果 、增強抗菌效果 、銀奈米粒子 、氧化鋅奈米粒子 、複合奈米凝膠粒子 、原位形成法 、線蟲 |
| 外文關鍵詞: | Antibacterial activity, enzymatic degradation, gel particle, gelatin, silver, zinc oxide, in-situ formation, nanoparticle, nematode |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(1) Dodds, D. R. Antibiotic resistance: A current epilogue. Biochemical pharmacology 2017, 134, 139-146.
(2) Pérez-Rodríguez, F.; Mercanoglu Taban, B. A state-of-art review on multi-drug resistant pathogens in foods of animal origin: risk factors and mitigation strategies. Frontiers in Microbiology 2019, 10, 2091.
(3) Ruddaraju, L. K.; Pammi, S. V. N.; Guntuku, G. s.; Padavala, V. S.; Kolapalli, V. R. M. A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian Journal of Pharmaceutical Sciences 2020, 15 (1), 42-59. DOI: https://doi.org/10.1016/j.ajps.2019.03.002.
(4) Hajipour, M. J.; Fromm, K. M.; Ashkarran, A. A.; Jimenez de Aberasturi, D.; de Larramendi, I. R.; Rojo, T.; Serpooshan, V.; Parak, W. J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol 2012, 30 (10), 499-511. DOI: 10.1016/j.tibtech.2012.06.004 From NLM.
(5) Mao, H. M.; Zhang, B.; Nie, Y. L.; Tang, X. N.; Yang, S.; Zhou, S. X. Enhanced antibacterial activity of V-doped ZnO@SiO2 composites. Applied Surface Science 2021, 546. DOI: 10.1016/j.apsusc.2021.149127. Lv, P.; Zhu, L.; Yu, Y.; Wang, W.; Liu, G.; Lu, H. Effect of
(6) Karthikeyan, K. T.; Nithya, A.; Jothivenkatachalam, K. Photocatalytic and antimicrobial activities of chitosan-TiO(2) nanocomposite. Int J Biol Macromol 2017, 104 (Pt B), 1762-1773. DOI: 10.1016/j.ijbiomac.2017.03.121 From NLM. Alavi, M.; Karimi, N. Hemoglobin self-assembly and antibacterial activities of bio-modified Ag-MgO nanocomposites by different concentrations of Artemisia haussknechtii and Protoparmeliopsis muralis extracts. Int J Biol Macromol 2020, 152, 1174-1185. DOI: 10.1016/j.ijbiomac.2019.10.207 From NLM.
(7) Mba, I. E.; Nweze, E. I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World Journal of Microbiology and Biotechnology 2021, 37 (6), 108. DOI: 10.1007/s11274-021-03070-x.
(8) Bello, A. B.; Kim, D.; Kim, D.; Park, H.; Lee, S.-H. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Engineering Part B: Reviews 2020, 26 (2), 164-180. DOI: 10.1089/ten.teb.2019.0256 (acccessed 2023/04/19).
(9) Kimura, A.; Jo, J. I.; Yoshida, F.; Hong, Z.; Tabata, Y.; Sumiyoshi, A.; Taguchi, M.; Aoki, I. Ultra-small size gelatin nanogel as a blood brain barrier impermeable contrast agent for magnetic resonance imaging. Acta Biomater 2021, 125, 290-299. DOI: 10.1016/j.actbio.2021.02.016 From NLM.
(10) Pham, T.-N.; Jiang, Y.-S.; Su, C.-F.; Jan, J.-S. In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities. International journal of biological macromolecules 2020, 146, 1050-1059.
(11) Chen, I. H.; Chen, Y.-F.; Liou, J.-H.; Lai, J.-T.; Hsu, C.-C.; Wang, N.-Y.; Jan, J.-S. Green synthesis of gold nanoparticle/gelatin/protein nanogels with enhanced bioluminescence/biofluorescence. Materials Science and Engineering: C 2019, 105, 110101. DOI: https://doi.org/10.1016/j.msec.2019.110101.
(12) Firdhouse, M. J.; Lalitha, P. Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology 2015, 2015.
(13) Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. ACS Publications: 2006; Vol. 110, pp 15666-15675.
(14) Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences 2014, 9 (6), 385.
(15) Malik, M. A.; Wani, M. Y.; Hashim, M. A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arabian journal of Chemistry 2012, 5 (4), 397-417.
(16) Prabhu, S.; Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters 2012, 2, 1-10.
(17) Shankar, S.; Rhim, J.-W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydrate polymers 2015, 130, 353-363.
(18) Azizi, S.; Mohamad, R.; Rahim, R. A.; Mohammadinejad, R.; Ariff, A. B. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. International journal of biological macromolecules 2017, 104, 423-431.
(19) Nair, B.; Pradeep, T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal growth & design 2002, 2 (4), 293-298.
(20) Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Parishcha, R.; Ajaykumar, P.; Alam, M.; Kumar, R. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano letters 2001, 1 (10), 515-519.
(21) Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology 2007, 73 (6), 1712-1720.
(22) Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16 (10), 2346.
(23) Kim, S.-H.; Lee, H.-S.; Ryu, D.-S.; Choi, S.-J.; Lee, D.-S. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Microbiology and Biotechnology Letters 2011, 39 (1), 77-85.
(24) Flores‐López, L. Z.; Espinoza‐Gómez, H.; Somanathan, R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. Journal of Applied Toxicology 2019, 39 (1), 16-26.
(25) He, W.; Zhou, Y.-T.; Wamer, W. G.; Boudreau, M. D.; Yin, J.-J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012, 33 (30), 7547-7555.
(26) Sotiriou, G. A.; Pratsinis, S. E. Antibacterial activity of nanosilver ions and particles. Environmental science & technology 2010, 44 (14), 5649-5654.
(27) Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances 2014, 4 (8), 3974-3983.
(28) Vaseem, M.; Umar, A.; Hahn, Y.-B. ZnO nanoparticles: growth, properties, and applications. Metal oxide nanostructures and their applications 2010, 5 (1), 10-20. Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—from synthesis to application: a review. Materials 2014, 7 (4), 2833-2881.
(29) Ryu, H.-W.; Park, B.-S.; Akbar, S. A.; Lee, W.-S.; Hong, K.-J.; Seo, Y.-J.; Shin, D.-C.; Park, J.-S.; Choi, G.-P. ZnO sol–gel derived porous film for CO gas sensing. Sensors and Actuators B: Chemical 2003, 96 (3), 717-722.
(30) Jayaraj, M. Synthesis of ZnO nanoparticles by hydrothermal method. 2007.
(31) Nakada, T.; Hirabayashi, Y.; Tokado, T.; Ohmori, D.; Mise, T. Novel device structure for Cu (In, Ga) Se2 thin film solar cells using transparent conducting oxide back and front contacts. Solar energy 2004, 77 (6), 739-747.
(32) Molina, M. A.; Ramos, J. L.; Espinosa‐Urgel, M. A two‐partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440. Environmental Microbiology 2006, 8 (4), 639-647.
(33) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. science 2001, 292 (5523), 1897-1899.
(34) Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 2015, 7, 219-242.
(35) Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials 2001, 3 (7), 643-646. DOI: https://doi.org/10.1016/S1466-6049(01)00197-0.
(36) Xu, L.; Dan, M.; Shao, A.; Cheng, X.; Zhang, C.; Yokel, R. A.; Takemura, T.; Hanagata, N.; Niwa, M.; Watanabe, D. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Int J Nanomedicine 2015, 10, 6105-6118. DOI: 10.2147/ijn.S85265 From NLM.
(37) Hritcu, L.; Stefan, M.; Ursu, L.; Neagu, A.; Mihasan, M.; Tartau, L.; Melnig, V. Exposure to silver nanoparticles induces oxidative stress and memory deficits in laboratory rats. Central European Journal of Biology 2011, 6 (4), 497-509. DOI: 10.2478/s11535-011-0022-z.
(38) Tabatabaei, S. R.; Moshrefi, M.; Askaripour, M. Prenatal Exposure to Silver Nanoparticles Causes Depression Like Responses in Mice. Indian J Pharm Sci 2015, 77 (6), 681-686. DOI: 10.4103/0250-474x.174983 From PIP.
(39) Cha, K.; Hong, H. W.; Choi, Y. G.; Lee, M. J.; Park, J. H.; Chae, H. K.; Ryu, G.; Myung, H. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 2008, 30 (11), 1893-1899. DOI: 10.1007/s10529-008-9786-2 From NLM.
(40) Kim, Y. S.; Kim, J. S.; Cho, H. S.; Rha, D. S.; Kim, J. M.; Park, J. D.; Choi, B. S.; Lim, R.; Chang, H. K.; Chung, Y. H.; et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology 2008, 20 (6), 575-583. DOI: 10.1080/08958370701874663.
(41) Maurer, L. L.; Meyer, J. N. A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environmental Science-Nano 2016, 3 (2), 311-322. DOI: 10.1039/c5en00187k.
(42) Ma, W.; Jing, L.; Valladares, A.; Mehta, S. L.; Wang, Z.; Li, P. A.; Bang, J. J. Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: amelioration by sodium selenite. Int J Biol Sci 2015, 11 (8), 860-867. DOI: 10.7150/ijbs.12059 From NLM.
(43) Shiny, P.; Mukherjee, A.; Chandrasekaran, N. DNA damage and mitochondria-mediated apoptosis of A549 lung carcinoma cells induced by biosynthesised silver and platinum nanoparticles. RSC advances 2016, 6 (33), 27775-27787.
(44) Valdiglesias, V.; Costa, C.; Kiliç, G.; Costa, S.; Pásaro, E.; Laffon, B.; Teixeira, J. P. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environment International 2013, 55, 92-100. DOI: https://doi.org/10.1016/j.envint.2013.02.013.
(45) Deng, X.; Luan, Q.; Chen, W.; Wang, Y.; Wu, M.; Zhang, H.; Jiao, Z. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 2009, 20 (11), Article. DOI: 10.1088/0957-4484/20/11/115101 Scopus.
(46) Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J. M. Collagen and gelatin. Annual review of food science and technology 2015, 6, 527-557.
(47) Morimoto, K.; Katsumata, H.; Yabuta, T.; Iwanaga, K.; Kakemi, M.; Tabata, Y.; Ikada, Y. Evaluation of gelatin microspheres for nasal and intramuscular administrations of salmon calcitonin. European Journal of Pharmaceutical Sciences 2001, 13 (2), 179-185.
(48) Alipal, J.; Mohd Pu'ad, N. A. S.; Lee, T. C.; Nayan, N. H. M.; Sahari, N.; Basri, H.; Idris, M. I.; Abdullah, H. Z. A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings 2021, 42, 240-250. DOI: https://doi.org/10.1016/j.matpr.2020.12.922.
(49) Etxabide, A.; Uranga, J.; Guerrero, P.; De la Caba, K. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocolloids 2017, 68, 192-198.
(50) Kamatchi, P.; Leela, K. Extraction, characterization and application of gelatin from Carcharhinus amblyrhyncho and Sphyraena barracuda. J. Biotechnol. Biochem 2016, 2, 40-49. Abd Elgadir, M.; Mirghani, M. E.; Adam, A. Fish gelatin and its applications in selected pharmaceutical aspects as alternative source to pork gelatin. J. Food Agric. Environ 2013, 11, 73-79.
(51) Kumosa, L. S.; Zetterberg, V.; Schouenborg, J. Gelatin promotes rapid restoration of the blood brain barrier after acute brain injury. Acta biomaterialia 2018, 65, 137-149. Ma, K.; Cai, X.; Zhou, Y.; Wang, Y.; Jiang, T. In Vitro and In Vivo Evaluation of Tetracycline Loaded Chitosan‐Gelatin Nanosphere Coatings for Titanium Surface Functionalization. Macromolecular bioscience 2017, 17 (2), 1600130.
(52) Zeng, Y.; Zhu, L.; Han, Q.; Liu, W.; Mao, X.; Li, Y.; Yu, N.; Feng, S.; Fu, Q.; Wang, X. Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta biomaterialia 2015, 25, 291-303.
(53) Yallapu, M. M.; Reddy, M. K.; Labhasetwar, V. Nanogels: chemistry to drug delivery. Biomedical applications of nanotechnology 2007, 131-171.
(54) Chan, M.; Almutairi, A. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum. Materials horizons 2016, 3 (1), 21-40.
(55) Mauri, E.; Giannitelli, S. M.; Trombetta, M.; Rainer, A. Synthesis of Nanogels: Current Trends and Future Outlook. In Gels, 2021; Vol. 7.
(56) Lovell, P. A.; Schork, F. J. Fundamentals of emulsion polymerization. Biomacromolecules 2020, 21 (11), 4396-4441.
(57) Kim, J.; Gauvin, R.; Yoon, H. J.; Kim, J. H.; Kwon, S. M.; Park, H. J.; Baek, S. H.; Cha, J. M.; Bae, H. Skin penetration-inducing gelatin methacryloyl nanogels for transdermal macromolecule delivery. Macromolecular Research 2016, 24 (12), 1115-1125. DOI: 10.1007/s13233-016-4147-9.
(58) Raghupathi, K.; Eron, S. J.; Anson, F.; Hardy, J. A.; Thayumanavan, S. Utilizing inverse emulsion polymerization to generate responsive nanogels for cytosolic protein delivery. Molecular pharmaceutics 2017, 14 (12), 4515-4524.
(59) Neamtu, I.; Rusu, A. G.; Diaconu, A.; Nita, L. E.; Chiriac, A. P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug delivery 2017, 24 (1), 539-557.
(60) Lim, K. S.; Galarraga, J. H.; Cui, X.; Lindberg, G. C.; Burdick, J. A.; Woodfield, T. B. Fundamentals and applications of photo-cross-linking in bioprinting. Chemical reviews 2020, 120 (19), 10662-10694.
(61) Williams, C. G.; Malik, A. N.; Kim, T. K.; Manson, P. N.; Elisseeff, J. H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26 (11), 1211-1218.
(62) Kim, J.; Gauvin, R.; Yoon, H. J.; Kim, J.-H.; Kwon, S.-M.; Park, H. J.; Baek, S. H.; Cha, J. M.; Bae, H. Skin penetration-inducing gelatin methacryloyl nanogels for transdermal macromolecule delivery. Macromolecular Research 2016, 24, 1115-1125.
(63) Sasaki, Y.; Akiyoshi, K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. The Chemical Record 2010, 10 (6), 366-376.
(64) Niskanen, J.; Tenhu, H. How to manipulate the upper critical solution temperature (UCST)? Polymer Chemistry 2017, 8 (1), 220-232.
(65) Ruscito, A.; Chiessi, E.; Toumia, Y.; Oddo, L.; Domenici, F.; Paradossi, G. Microgel particles with distinct morphologies and common chemical compositions: a unified description of the responsivity to temperature and osmotic stress. Gels 2020, 6 (4), 34.
(66) Cerroni, B.; Pasale, S. K.; Mateescu, A.; Domenici, F.; Oddo, L.; Bordi, F.; Paradossi, G. Temperature-tunable nanoparticles for selective biointerface. Biomacromolecules 2015, 16 (6), 1753-1760.
(67) Argentiere, S.; Blasi, L.; Morello, G.; Gigli, G. A novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes. The Journal of Physical Chemistry C 2011, 115 (33), 16347-16353.
(68) Li, Z.; Huang, J.; Wu, J. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomaterials Science 2021, 9 (3), 574-589.
(69) Marsot, A.; Boulamery, A.; Bruguerolle, B.; Simon, N. Vancomycin: a review of population pharmacokinetic analyses. Clinical pharmacokinetics 2012, 51, 1-13.
(70) Li, L.-L.; Xu, J.-H.; Qi, G.-B.; Zhao, X.; Yu, F.; Wang, H. Core–shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS nano 2014, 8 (5), 4975-4983.
(71) Zhang, Y.; Zhang, J.; Chen, W.; Angsantikul, P.; Spiekermann, K. A.; Fang, R. H.; Gao, W.; Zhang, L. Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. Journal of Controlled Release 2017, 263, 185-191.
(72) Shanmuganathan, R.; Karuppusamy, I.; Saravanan, M.; Muthukumar, H.; Ponnuchamy, K.; Ramkumar, V. S.; Pugazhendhi, A. Synthesis of silver nanoparticles and their biomedical applications-a comprehensive review. Current pharmaceutical design 2019, 25 (24), 2650-2660.
(73) Matai, I.; Sachdev, A.; Dubey, P.; Uday Kumar, S.; Bhushan, B.; Gopinath, P. Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids and Surfaces B: Biointerfaces 2014, 115, 359-367. DOI: https://doi.org/10.1016/j.colsurfb.2013.12.005.
(74) Ravindra, S.; Mulaba-Bafubiandi, A. F.; Rajinikanth, V.; Varaprasad, K.; Narayana Reddy, N.; Mohana Raju, K. Development and characterization of curcumin loaded silver nanoparticle hydrogels for antibacterial and drug delivery applications. Journal of Inorganic and Organometallic Polymers and Materials 2012, 22, 1254-1262. Qasim, M.; Udomluck, N.; Chang, J.; Park, H.; Kim, K. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. International journal of nanomedicine 2018, 13, 235.
(75) El-Sherif, H.; El-Masry, M.; Kansoh, A. Hydrogels as template nanoreactors for silver nanoparticles formation and their antimicrobial activities. Macromolecular Research 2011, 19, 1157-1165. Mohan, Y. M.; Lee, K.; Premkumar, T.; Geckeler, K. E. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer 2007, 48 (1), 158-164.
(76) Khan, A.; Khan, T. H.; El-Toni, A. M.; Aldalbahi, A.; Alam, J.; Ahamad, T. In situ formation and immobilization of silver nanoparticles using thermo-responsive microgel particles and their cytotoxicity evaluation. Materials Letters 2019, 235, 197-201.
(77) Coll Ferrer, M. C.; Ferrier, R. C.; Eckmann, D. M.; Composto, R. J. A facile route to synthesize nanogels doped with silver nanoparticles. Journal of nanoparticle research 2013, 15, 1-7.
(78) Choi, J.-B.; Park, J.-S.; Khil, M.-S.; Gwon, H.-J.; Lim, Y.-M.; Jeong, S.-I.; Shin, Y.-M.; Nho, Y.-C. Characterization and antimicrobial property of poly (acrylic acid) nanogel containing silver particle prepared by electron beam. International Journal of Molecular Sciences 2013, 14 (6), 11011-11023.
(79) Talsma, S. S. Biofilms on medical devices. Home Healthcare Now 2007, 25 (9), 589-594.
(80) Keskin, D.; Tromp, L.; Mergel, O.; Zu, G.; Warszawik, E.; van der Mei, H. C.; van Rijn, P. Highly efficient antimicrobial and antifouling surface coatings with triclosan-loaded nanogels. ACS applied materials & interfaces 2020, 12 (52), 57721-57731.
(81) Nyström, L.; Strömstedt, A. A.; Schmidtchen, A.; Malmsten, M. Peptide-loaded microgels as antimicrobial and anti-inflammatory surface coatings. Biomacromolecules 2018, 19 (8), 3456-3466.
(82) Jin, T.; Mohammad, M.; Pullerits, R.; Ali, A. Bacteria and Host Interplay in Staphylococcus aureus Septic Arthritis and Sepsis. Pathogens 2021, 10 (2), 158.
(83) Jennison, A. V.; Verma, N. K. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiology Reviews 2004, 28 (1), 43-58. DOI: 10.1016/j.femsre.2003.07.002 (acccessed 5/18/2023).
(84) Nguyen, Y.; Sperandio, V. Enterohemorrhagic E. coli (EHEC) pathogenesis. Frontiers in cellular and infection microbiology 2012, 2, 90.
(85) Coburn, B.; Grassl, G. A.; Finlay, B. Salmonella, the host and disease: a brief review. Immunology and cell biology 2007, 85 (2), 112-118.
(86) Riddle, D. L.; Blumenthal, T.; Meyer, B. J.; Priess, J. R. C. Elegans Ii. 1997.
(87) An, L.; Fu, X.; Chen, J.; Ma, J. Application of Caenorhabditis elegans in Lipid Metabolism Research. International Journal of Molecular Sciences 2023, 24 (2), 1173.
(88) Lunardi, C. N.; Gomes, A. J.; Rocha, F. S.; De Tommaso, J.; Patience, G. S. Experimental methods in chemical engineering: Zeta potential. The Canadian Journal of Chemical Engineering 2021, 99 (3), 627-639, https://doi.org/10.1002/cjce.23914. DOI: https://doi.org/10.1002/cjce.23914 (acccessed 2023/02/15).
(89) Alshehawy, A. M.; Mansour, D.-E. A.; Ghali, M.; Lehtonen, M.; Darwish, M. M. F. Photoluminescence Spectroscopy Measurements for Effective Condition Assessment of Transformer Insulating Oil. In Processes, 2021; Vol. 9.
(90) Abed, J. Characterization and Modification of Solar Energy Water Splitting Material for Storable Fuel Generation. Khalifa University 2017.
(91) Ausili, A.; Sánchez, M.; Gómez-Fernández, J. C. Attenuated total reflectance infrared spectroscopy: A powerful method for the simultaneous study of structure and spatial orientation of lipids and membrane proteins. Biomedical Spectroscopy and Imaging 2015, 4, 159-170. DOI: 10.3233/BSI-150104.
(92) Wilschefski, S. C.; Baxter, M. R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin Biochem Rev 2019, 40 (3), 115-133. DOI: 10.33176/aacb-19-00024 From NLM.
(93) Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning electron microscopy: Principle and applications in nanomaterials characterization. Handbook of materials characterization 2018, 113-145.
(94) Vargas-Alfredo, N.; Munar-Bestard, M.; Ramis, J. M.; Monjo, M. Synthesis and Modification of Gelatin Methacryloyl (GelMA) with Antibacterial Quaternary Groups and Its Potential for Periodontal Applications. Gels 2022, 8 (10). DOI: 10.3390/gels8100630.
(95) Estrada-Urbina, J.; Cruz-Alonso, A.; Santander-González, M.; Méndez-Albores, A.; Vázquez-Durán, A. Nanoscale Zinc Oxide Particles for Improving the Physiological and Sanitary Quality of a Mexican Landrace of Red Maize. Nanomaterials (Basel) 2018, 8 (4). DOI: 10.3390/nano8040247 From NLM.
(96) Kadam, A. N.; Bhopate, D. P.; Kondalkar, V. V.; Majhi, S. M.; Bathula, C. D.; Tran, A.-V.; Lee, S.-W. Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity. Journal of Industrial and Engineering Chemistry 2018, 61, 78-86. DOI: https://doi.org/10.1016/j.jiec.2017.12.003.
(97) Xiong, Y. J.; Brunson, M.; Huh, J.; Huang, A. R.; Coster, A.; Wendt, K.; Fay, J.; Qin, D. The Role of Surface Chemistry on the Toxicity of Ag Nanoparticles. Small 2013, 9 (15), 2628-2638. DOI: 10.1002/smll.201202476.
(98) Bednar, J.; Svoboda, L.; Rybkova, Z.; Dvorsky, R.; Malachova, K.; Stachurova, T.; Matysek, D.; Foldyna, V. Antimicrobial Synergistic Effect Between Ag and Zn in Ag-ZnO center dot mSiO(2) Silicate Composite with High Specific Surface Area. Nanomaterials 2019, 9 (9). DOI: 10.3390/nano9091265.
(99) Coll Ferrer, M. C.; Dastgheyb, S.; Hickok, N. J.; Eckmann, D. M.; Composto, R. J. Designing nanogel carriers for antibacterial applications. Acta Biomaterialia 2014, 10 (5), 2105-2111. DOI: https://doi.org/10.1016/j.actbio.2014.01.009.
(100) Devanesan, S.; AlSalhi, M. S. Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus esculentus for Cytotoxicity and Antimicrobial Studies. International Journal of Nanomedicine 2021, 16, 3343-3356. DOI: 10.2147/ijn.S307676.
(101) Venkatasubbu, G. D.; Baskar, R.; Anusuya, T.; Seshan, C. A.; Chelliah, R. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids and Surfaces B-Biointerfaces 2016, 148, 600-606. DOI: 10.1016/j.colsurfb.2016.09.042.
(102) Matai, I.; Sachdev, A.; Dubey, P.; Kumar, S. U.; Bhushan, B.; Gopinath, P. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E-coli. Colloids and Surfaces B-Biointerfaces 2014, 115, 359-367. DOI: 10.1016/j.colsurfb.2013.12.005.
(103) Arabi, F.; Imandar, M.; Negahdary, M.; Noughabi, M. T.; Akbari-dastjerdi, H.; Fazilati, M. Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann. Biol. Res. 2012, 3 (7), 3679-3685, Article. Scopus.
(104) Durán, N.; Marcato, P. D.; De Conti, R.; Alves, O. L.; Costa, F. T. M.; Brocchi, M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society 2010, 21 (6), 949-959, Review. DOI: 10.1590/S0103-50532010000600002 Scopus.
(105) Sifri, C. D.; Begun, J.; Ausubel, F. M.; Calderwood, S. B. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infection and immunity 2003, 71 (4), 2208-2217.
(106) Staphylococcus aureus resistant to vancomycin--United States, 2002. MMWR Morb Mortal Wkly Rep 2002, 51 (26), 565-567. From NLM.
(107) Kesika, P.; Karutha Pandian, S.; Balamurugan, K. Analysis of Shigella flexneri-mediated infections in model organism Caenorhabditis elegans. Scand J Infect Dis 2011, 43 (4), 286-295. DOI: 10.3109/00365548.2010.548400 From NLM.
校內:2028-07-26公開