簡易檢索 / 詳目顯示

研究生: 莊惠中
Zhuang, Hui-Zhong
論文名稱: 原位法製備具協同抗菌效果之銀/氧化鋅複合明膠奈米膠
Gelatin composite nanogels comprised of in-situ formed zinc oxide and silver nanoparticles with synergistic effect on antibacterial activity
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 抗菌酵素降解協同抗菌效果增強抗菌效果銀奈米粒子氧化鋅奈米粒子複合奈米凝膠粒子原位形成法線蟲
外文關鍵詞: Antibacterial activity, enzymatic degradation, gel particle, gelatin, silver, zinc oxide, in-situ formation, nanoparticle, nematode
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract II 誌謝 XIV 目錄 XV 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1 - 1 前言 1 1-1-1 多重抗藥性細菌 1 1-1-2 奈米抗菌技術 2 1-1-3 生醫材料 3 1 - 2 研究動機 4 第二章 文獻回顧 6 2 – 1無機抗菌材料 6 2-1-1銀奈米粒子 6 2-1-2氧化鋅奈米粒子 9 2-1-3銀和氧化鋅奈米粒子毒性探討 10 2 – 2明膠 12 2 – 3奈米凝膠粒子 14 2-3-1 奈米凝膠粒子之定義 14 2-3-2 化學交聯 15 2-3-3 物理交聯 17 2 – 4不同的複合奈米凝膠粒子抗菌應用 20 2-4-1 載有抗菌劑的奈米凝膠粒子 20 2-4-2 載銀奈米凝膠粒子 21 2-4-3 抗菌奈米凝膠粒子表面塗層應用 22 2 – 5 實驗細菌與線蟲介紹 24 2-5-1 金黃色葡萄球菌(S. aureus) 24 2-5-2 志賀桿菌(Shigella flexneri) 25 2-5-3出血性大腸桿菌(Enterohemorrhagic Escherichia coli , EHEC) 26 2-5-4 沙門氏桿菌(S. typhimurium) 26 2-5-5 秀麗隱桿線蟲(C. elegans) 27 第三章 實驗方法 29 3 - 1 實驗藥品與儀器設備 29 3 - 2 實驗細胞、菌株和線蟲 32 3 - 3高分子合成 33 3 - 4奈米凝膠粒子製備 34 3 - 5 以原位形成法製備銀與氧化鋅奈米粒子複合奈米凝膠粒子 35 3 - 6 生物相容性測試 36 3-6-1 細胞凍存與解凍 36 3-6-2 細胞繼代培養 36 3-6-3 細胞計數 37 3-6-4 細胞毒性測試 37 3-6-5 溶血性測試 38 3-6-6紅血球與細菌、高分子共培養實驗 38 3 – 7奈米凝膠粒子抗菌實驗 40 3-7-1 製備瓊脂培養基 40 3-7-2 培養菌盤與菌液 40 3-7-3 定量菌液 40 3-7-4 細菌塗盤與計算菌落數 41 3-7-5 SEM分析用的細菌樣本製備 41 3 - 8 動物實驗 42 3-8-1 C. elegans 品系及培養 42 3-8-2 線蟲定量及同步化 42 3-8-3 線蟲存活率 43 3 - 9實驗儀器之分析原理 44 3-9-1 核磁共振光譜 (Nuclear Magnetic Resonance Spectroscopy, NMR) 44 3-9-2 動態光散射儀分析儀 (Dynamic Light Scattering, DLS) 44 3-9-3 紫外光/可見光光譜儀(UV/Vis spectrophotometer) 46 3-9-4 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 47 3-9-5 傅利葉轉換紅外線光譜儀 (Fourier-transform infrared spectroscopy, FT-IR) 48 3-9-6 高解析感應耦合電漿質譜分析儀 (Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 49 3-9-7 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 51 第四章 結果與討論 52 4 - 1 高分子合成結構分析 52 4-1-1 明膠與改質明膠結構鑑定 52 4 - 2複合奈米凝膠粒子性質分析 53 4-2-1 複合奈米凝膠粒子之粒徑與界達電位分析 53 4-2-2 複合奈米凝膠粒子之UV-Vis 和FT-IR光譜分析 56 4-2-3複合奈米凝膠粒子之金屬元素定量分析 58 4-2-4複合奈米凝膠粒子TEM分析 60 4 – 3 奈米凝膠粒子之生物相容性分析 62 4-3-1 溶血性試驗分析 62 4-3-2 細胞毒性分析 64 4 – 4奈米凝膠粒子抗菌能力之探討 66 4-4-1 複合奈米凝膠粒子MIC與MBC分析 66 4-4-2 複合奈米凝膠粒子之抗菌SEM圖與機制探討 72 4-4-3 複合奈米凝膠粒子之細菌生長抑制曲線分析 74 4 – 5奈米凝膠粒子動物實驗應用探討 75 4-5-1 秀麗隱桿線蟲存活率 76 第五章 結論與未來建議 79 第六章 參考文獻 80

    (1) Dodds, D. R. Antibiotic resistance: A current epilogue. Biochemical pharmacology 2017, 134, 139-146.
    (2) Pérez-Rodríguez, F.; Mercanoglu Taban, B. A state-of-art review on multi-drug resistant pathogens in foods of animal origin: risk factors and mitigation strategies. Frontiers in Microbiology 2019, 10, 2091.
    (3) Ruddaraju, L. K.; Pammi, S. V. N.; Guntuku, G. s.; Padavala, V. S.; Kolapalli, V. R. M. A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian Journal of Pharmaceutical Sciences 2020, 15 (1), 42-59. DOI: https://doi.org/10.1016/j.ajps.2019.03.002.
    (4) Hajipour, M. J.; Fromm, K. M.; Ashkarran, A. A.; Jimenez de Aberasturi, D.; de Larramendi, I. R.; Rojo, T.; Serpooshan, V.; Parak, W. J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol 2012, 30 (10), 499-511. DOI: 10.1016/j.tibtech.2012.06.004 From NLM.
    (5) Mao, H. M.; Zhang, B.; Nie, Y. L.; Tang, X. N.; Yang, S.; Zhou, S. X. Enhanced antibacterial activity of V-doped ZnO@SiO2 composites. Applied Surface Science 2021, 546. DOI: 10.1016/j.apsusc.2021.149127. Lv, P.; Zhu, L.; Yu, Y.; Wang, W.; Liu, G.; Lu, H. Effect of
    (6) Karthikeyan, K. T.; Nithya, A.; Jothivenkatachalam, K. Photocatalytic and antimicrobial activities of chitosan-TiO(2) nanocomposite. Int J Biol Macromol 2017, 104 (Pt B), 1762-1773. DOI: 10.1016/j.ijbiomac.2017.03.121 From NLM. Alavi, M.; Karimi, N. Hemoglobin self-assembly and antibacterial activities of bio-modified Ag-MgO nanocomposites by different concentrations of Artemisia haussknechtii and Protoparmeliopsis muralis extracts. Int J Biol Macromol 2020, 152, 1174-1185. DOI: 10.1016/j.ijbiomac.2019.10.207 From NLM.
    (7) Mba, I. E.; Nweze, E. I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World Journal of Microbiology and Biotechnology 2021, 37 (6), 108. DOI: 10.1007/s11274-021-03070-x.
    (8) Bello, A. B.; Kim, D.; Kim, D.; Park, H.; Lee, S.-H. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Engineering Part B: Reviews 2020, 26 (2), 164-180. DOI: 10.1089/ten.teb.2019.0256 (acccessed 2023/04/19).
    (9) Kimura, A.; Jo, J. I.; Yoshida, F.; Hong, Z.; Tabata, Y.; Sumiyoshi, A.; Taguchi, M.; Aoki, I. Ultra-small size gelatin nanogel as a blood brain barrier impermeable contrast agent for magnetic resonance imaging. Acta Biomater 2021, 125, 290-299. DOI: 10.1016/j.actbio.2021.02.016 From NLM.
    (10) Pham, T.-N.; Jiang, Y.-S.; Su, C.-F.; Jan, J.-S. In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities. International journal of biological macromolecules 2020, 146, 1050-1059.
    (11) Chen, I. H.; Chen, Y.-F.; Liou, J.-H.; Lai, J.-T.; Hsu, C.-C.; Wang, N.-Y.; Jan, J.-S. Green synthesis of gold nanoparticle/gelatin/protein nanogels with enhanced bioluminescence/biofluorescence. Materials Science and Engineering: C 2019, 105, 110101. DOI: https://doi.org/10.1016/j.msec.2019.110101.
    (12) Firdhouse, M. J.; Lalitha, P. Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology 2015, 2015.
    (13) Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. ACS Publications: 2006; Vol. 110, pp 15666-15675.
    (14) Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences 2014, 9 (6), 385.
    (15) Malik, M. A.; Wani, M. Y.; Hashim, M. A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arabian journal of Chemistry 2012, 5 (4), 397-417.
    (16) Prabhu, S.; Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters 2012, 2, 1-10.
    (17) Shankar, S.; Rhim, J.-W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydrate polymers 2015, 130, 353-363.
    (18) Azizi, S.; Mohamad, R.; Rahim, R. A.; Mohammadinejad, R.; Ariff, A. B. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. International journal of biological macromolecules 2017, 104, 423-431.
    (19) Nair, B.; Pradeep, T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal growth & design 2002, 2 (4), 293-298.
    (20) Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Parishcha, R.; Ajaykumar, P.; Alam, M.; Kumar, R. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano letters 2001, 1 (10), 515-519.
    (21) Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology 2007, 73 (6), 1712-1720.
    (22) Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16 (10), 2346.
    (23) Kim, S.-H.; Lee, H.-S.; Ryu, D.-S.; Choi, S.-J.; Lee, D.-S. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Microbiology and Biotechnology Letters 2011, 39 (1), 77-85.
    (24) Flores‐López, L. Z.; Espinoza‐Gómez, H.; Somanathan, R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. Journal of Applied Toxicology 2019, 39 (1), 16-26.
    (25) He, W.; Zhou, Y.-T.; Wamer, W. G.; Boudreau, M. D.; Yin, J.-J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012, 33 (30), 7547-7555.
    (26) Sotiriou, G. A.; Pratsinis, S. E. Antibacterial activity of nanosilver ions and particles. Environmental science & technology 2010, 44 (14), 5649-5654.
    (27) Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances 2014, 4 (8), 3974-3983.
    (28) Vaseem, M.; Umar, A.; Hahn, Y.-B. ZnO nanoparticles: growth, properties, and applications. Metal oxide nanostructures and their applications 2010, 5 (1), 10-20. Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—from synthesis to application: a review. Materials 2014, 7 (4), 2833-2881.
    (29) Ryu, H.-W.; Park, B.-S.; Akbar, S. A.; Lee, W.-S.; Hong, K.-J.; Seo, Y.-J.; Shin, D.-C.; Park, J.-S.; Choi, G.-P. ZnO sol–gel derived porous film for CO gas sensing. Sensors and Actuators B: Chemical 2003, 96 (3), 717-722.
    (30) Jayaraj, M. Synthesis of ZnO nanoparticles by hydrothermal method. 2007.
    (31) Nakada, T.; Hirabayashi, Y.; Tokado, T.; Ohmori, D.; Mise, T. Novel device structure for Cu (In, Ga) Se2 thin film solar cells using transparent conducting oxide back and front contacts. Solar energy 2004, 77 (6), 739-747.
    (32) Molina, M. A.; Ramos, J. L.; Espinosa‐Urgel, M. A two‐partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440. Environmental Microbiology 2006, 8 (4), 639-647.
    (33) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. science 2001, 292 (5523), 1897-1899.
    (34) Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 2015, 7, 219-242.
    (35) Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials 2001, 3 (7), 643-646. DOI: https://doi.org/10.1016/S1466-6049(01)00197-0.
    (36) Xu, L.; Dan, M.; Shao, A.; Cheng, X.; Zhang, C.; Yokel, R. A.; Takemura, T.; Hanagata, N.; Niwa, M.; Watanabe, D. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Int J Nanomedicine 2015, 10, 6105-6118. DOI: 10.2147/ijn.S85265 From NLM.
    (37) Hritcu, L.; Stefan, M.; Ursu, L.; Neagu, A.; Mihasan, M.; Tartau, L.; Melnig, V. Exposure to silver nanoparticles induces oxidative stress and memory deficits in laboratory rats. Central European Journal of Biology 2011, 6 (4), 497-509. DOI: 10.2478/s11535-011-0022-z.
    (38) Tabatabaei, S. R.; Moshrefi, M.; Askaripour, M. Prenatal Exposure to Silver Nanoparticles Causes Depression Like Responses in Mice. Indian J Pharm Sci 2015, 77 (6), 681-686. DOI: 10.4103/0250-474x.174983 From PIP.
    (39) Cha, K.; Hong, H. W.; Choi, Y. G.; Lee, M. J.; Park, J. H.; Chae, H. K.; Ryu, G.; Myung, H. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 2008, 30 (11), 1893-1899. DOI: 10.1007/s10529-008-9786-2 From NLM.
    (40) Kim, Y. S.; Kim, J. S.; Cho, H. S.; Rha, D. S.; Kim, J. M.; Park, J. D.; Choi, B. S.; Lim, R.; Chang, H. K.; Chung, Y. H.; et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology 2008, 20 (6), 575-583. DOI: 10.1080/08958370701874663.
    (41) Maurer, L. L.; Meyer, J. N. A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environmental Science-Nano 2016, 3 (2), 311-322. DOI: 10.1039/c5en00187k.
    (42) Ma, W.; Jing, L.; Valladares, A.; Mehta, S. L.; Wang, Z.; Li, P. A.; Bang, J. J. Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: amelioration by sodium selenite. Int J Biol Sci 2015, 11 (8), 860-867. DOI: 10.7150/ijbs.12059 From NLM.
    (43) Shiny, P.; Mukherjee, A.; Chandrasekaran, N. DNA damage and mitochondria-mediated apoptosis of A549 lung carcinoma cells induced by biosynthesised silver and platinum nanoparticles. RSC advances 2016, 6 (33), 27775-27787.
    (44) Valdiglesias, V.; Costa, C.; Kiliç, G.; Costa, S.; Pásaro, E.; Laffon, B.; Teixeira, J. P. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environment International 2013, 55, 92-100. DOI: https://doi.org/10.1016/j.envint.2013.02.013.
    (45) Deng, X.; Luan, Q.; Chen, W.; Wang, Y.; Wu, M.; Zhang, H.; Jiao, Z. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 2009, 20 (11), Article. DOI: 10.1088/0957-4484/20/11/115101 Scopus.
    (46) Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J. M. Collagen and gelatin. Annual review of food science and technology 2015, 6, 527-557.
    (47) Morimoto, K.; Katsumata, H.; Yabuta, T.; Iwanaga, K.; Kakemi, M.; Tabata, Y.; Ikada, Y. Evaluation of gelatin microspheres for nasal and intramuscular administrations of salmon calcitonin. European Journal of Pharmaceutical Sciences 2001, 13 (2), 179-185.
    (48) Alipal, J.; Mohd Pu'ad, N. A. S.; Lee, T. C.; Nayan, N. H. M.; Sahari, N.; Basri, H.; Idris, M. I.; Abdullah, H. Z. A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings 2021, 42, 240-250. DOI: https://doi.org/10.1016/j.matpr.2020.12.922.
    (49) Etxabide, A.; Uranga, J.; Guerrero, P.; De la Caba, K. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocolloids 2017, 68, 192-198.
    (50) Kamatchi, P.; Leela, K. Extraction, characterization and application of gelatin from Carcharhinus amblyrhyncho and Sphyraena barracuda. J. Biotechnol. Biochem 2016, 2, 40-49. Abd Elgadir, M.; Mirghani, M. E.; Adam, A. Fish gelatin and its applications in selected pharmaceutical aspects as alternative source to pork gelatin. J. Food Agric. Environ 2013, 11, 73-79.
    (51) Kumosa, L. S.; Zetterberg, V.; Schouenborg, J. Gelatin promotes rapid restoration of the blood brain barrier after acute brain injury. Acta biomaterialia 2018, 65, 137-149. Ma, K.; Cai, X.; Zhou, Y.; Wang, Y.; Jiang, T. In Vitro and In Vivo Evaluation of Tetracycline Loaded Chitosan‐Gelatin Nanosphere Coatings for Titanium Surface Functionalization. Macromolecular bioscience 2017, 17 (2), 1600130.
    (52) Zeng, Y.; Zhu, L.; Han, Q.; Liu, W.; Mao, X.; Li, Y.; Yu, N.; Feng, S.; Fu, Q.; Wang, X. Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta biomaterialia 2015, 25, 291-303.
    (53) Yallapu, M. M.; Reddy, M. K.; Labhasetwar, V. Nanogels: chemistry to drug delivery. Biomedical applications of nanotechnology 2007, 131-171.
    (54) Chan, M.; Almutairi, A. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum. Materials horizons 2016, 3 (1), 21-40.
    (55) Mauri, E.; Giannitelli, S. M.; Trombetta, M.; Rainer, A. Synthesis of Nanogels: Current Trends and Future Outlook. In Gels, 2021; Vol. 7.
    (56) Lovell, P. A.; Schork, F. J. Fundamentals of emulsion polymerization. Biomacromolecules 2020, 21 (11), 4396-4441.
    (57) Kim, J.; Gauvin, R.; Yoon, H. J.; Kim, J. H.; Kwon, S. M.; Park, H. J.; Baek, S. H.; Cha, J. M.; Bae, H. Skin penetration-inducing gelatin methacryloyl nanogels for transdermal macromolecule delivery. Macromolecular Research 2016, 24 (12), 1115-1125. DOI: 10.1007/s13233-016-4147-9.
    (58) Raghupathi, K.; Eron, S. J.; Anson, F.; Hardy, J. A.; Thayumanavan, S. Utilizing inverse emulsion polymerization to generate responsive nanogels for cytosolic protein delivery. Molecular pharmaceutics 2017, 14 (12), 4515-4524.
    (59) Neamtu, I.; Rusu, A. G.; Diaconu, A.; Nita, L. E.; Chiriac, A. P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug delivery 2017, 24 (1), 539-557.
    (60) Lim, K. S.; Galarraga, J. H.; Cui, X.; Lindberg, G. C.; Burdick, J. A.; Woodfield, T. B. Fundamentals and applications of photo-cross-linking in bioprinting. Chemical reviews 2020, 120 (19), 10662-10694.
    (61) Williams, C. G.; Malik, A. N.; Kim, T. K.; Manson, P. N.; Elisseeff, J. H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26 (11), 1211-1218.
    (62) Kim, J.; Gauvin, R.; Yoon, H. J.; Kim, J.-H.; Kwon, S.-M.; Park, H. J.; Baek, S. H.; Cha, J. M.; Bae, H. Skin penetration-inducing gelatin methacryloyl nanogels for transdermal macromolecule delivery. Macromolecular Research 2016, 24, 1115-1125.
    (63) Sasaki, Y.; Akiyoshi, K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. The Chemical Record 2010, 10 (6), 366-376.
    (64) Niskanen, J.; Tenhu, H. How to manipulate the upper critical solution temperature (UCST)? Polymer Chemistry 2017, 8 (1), 220-232.
    (65) Ruscito, A.; Chiessi, E.; Toumia, Y.; Oddo, L.; Domenici, F.; Paradossi, G. Microgel particles with distinct morphologies and common chemical compositions: a unified description of the responsivity to temperature and osmotic stress. Gels 2020, 6 (4), 34.
    (66) Cerroni, B.; Pasale, S. K.; Mateescu, A.; Domenici, F.; Oddo, L.; Bordi, F.; Paradossi, G. Temperature-tunable nanoparticles for selective biointerface. Biomacromolecules 2015, 16 (6), 1753-1760.
    (67) Argentiere, S.; Blasi, L.; Morello, G.; Gigli, G. A novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes. The Journal of Physical Chemistry C 2011, 115 (33), 16347-16353.
    (68) Li, Z.; Huang, J.; Wu, J. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomaterials Science 2021, 9 (3), 574-589.
    (69) Marsot, A.; Boulamery, A.; Bruguerolle, B.; Simon, N. Vancomycin: a review of population pharmacokinetic analyses. Clinical pharmacokinetics 2012, 51, 1-13.
    (70) Li, L.-L.; Xu, J.-H.; Qi, G.-B.; Zhao, X.; Yu, F.; Wang, H. Core–shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS nano 2014, 8 (5), 4975-4983.
    (71) Zhang, Y.; Zhang, J.; Chen, W.; Angsantikul, P.; Spiekermann, K. A.; Fang, R. H.; Gao, W.; Zhang, L. Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. Journal of Controlled Release 2017, 263, 185-191.
    (72) Shanmuganathan, R.; Karuppusamy, I.; Saravanan, M.; Muthukumar, H.; Ponnuchamy, K.; Ramkumar, V. S.; Pugazhendhi, A. Synthesis of silver nanoparticles and their biomedical applications-a comprehensive review. Current pharmaceutical design 2019, 25 (24), 2650-2660.
    (73) Matai, I.; Sachdev, A.; Dubey, P.; Uday Kumar, S.; Bhushan, B.; Gopinath, P. Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids and Surfaces B: Biointerfaces 2014, 115, 359-367. DOI: https://doi.org/10.1016/j.colsurfb.2013.12.005.
    (74) Ravindra, S.; Mulaba-Bafubiandi, A. F.; Rajinikanth, V.; Varaprasad, K.; Narayana Reddy, N.; Mohana Raju, K. Development and characterization of curcumin loaded silver nanoparticle hydrogels for antibacterial and drug delivery applications. Journal of Inorganic and Organometallic Polymers and Materials 2012, 22, 1254-1262. Qasim, M.; Udomluck, N.; Chang, J.; Park, H.; Kim, K. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. International journal of nanomedicine 2018, 13, 235.
    (75) El-Sherif, H.; El-Masry, M.; Kansoh, A. Hydrogels as template nanoreactors for silver nanoparticles formation and their antimicrobial activities. Macromolecular Research 2011, 19, 1157-1165. Mohan, Y. M.; Lee, K.; Premkumar, T.; Geckeler, K. E. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer 2007, 48 (1), 158-164.
    (76) Khan, A.; Khan, T. H.; El-Toni, A. M.; Aldalbahi, A.; Alam, J.; Ahamad, T. In situ formation and immobilization of silver nanoparticles using thermo-responsive microgel particles and their cytotoxicity evaluation. Materials Letters 2019, 235, 197-201.
    (77) Coll Ferrer, M. C.; Ferrier, R. C.; Eckmann, D. M.; Composto, R. J. A facile route to synthesize nanogels doped with silver nanoparticles. Journal of nanoparticle research 2013, 15, 1-7.
    (78) Choi, J.-B.; Park, J.-S.; Khil, M.-S.; Gwon, H.-J.; Lim, Y.-M.; Jeong, S.-I.; Shin, Y.-M.; Nho, Y.-C. Characterization and antimicrobial property of poly (acrylic acid) nanogel containing silver particle prepared by electron beam. International Journal of Molecular Sciences 2013, 14 (6), 11011-11023.
    (79) Talsma, S. S. Biofilms on medical devices. Home Healthcare Now 2007, 25 (9), 589-594.
    (80) Keskin, D.; Tromp, L.; Mergel, O.; Zu, G.; Warszawik, E.; van der Mei, H. C.; van Rijn, P. Highly efficient antimicrobial and antifouling surface coatings with triclosan-loaded nanogels. ACS applied materials & interfaces 2020, 12 (52), 57721-57731.
    (81) Nyström, L.; Strömstedt, A. A.; Schmidtchen, A.; Malmsten, M. Peptide-loaded microgels as antimicrobial and anti-inflammatory surface coatings. Biomacromolecules 2018, 19 (8), 3456-3466.
    (82) Jin, T.; Mohammad, M.; Pullerits, R.; Ali, A. Bacteria and Host Interplay in Staphylococcus aureus Septic Arthritis and Sepsis. Pathogens 2021, 10 (2), 158.
    (83) Jennison, A. V.; Verma, N. K. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiology Reviews 2004, 28 (1), 43-58. DOI: 10.1016/j.femsre.2003.07.002 (acccessed 5/18/2023).
    (84) Nguyen, Y.; Sperandio, V. Enterohemorrhagic E. coli (EHEC) pathogenesis. Frontiers in cellular and infection microbiology 2012, 2, 90.
    (85) Coburn, B.; Grassl, G. A.; Finlay, B. Salmonella, the host and disease: a brief review. Immunology and cell biology 2007, 85 (2), 112-118.
    (86) Riddle, D. L.; Blumenthal, T.; Meyer, B. J.; Priess, J. R. C. Elegans Ii. 1997.
    (87) An, L.; Fu, X.; Chen, J.; Ma, J. Application of Caenorhabditis elegans in Lipid Metabolism Research. International Journal of Molecular Sciences 2023, 24 (2), 1173.
    (88) Lunardi, C. N.; Gomes, A. J.; Rocha, F. S.; De Tommaso, J.; Patience, G. S. Experimental methods in chemical engineering: Zeta potential. The Canadian Journal of Chemical Engineering 2021, 99 (3), 627-639, https://doi.org/10.1002/cjce.23914. DOI: https://doi.org/10.1002/cjce.23914 (acccessed 2023/02/15).
    (89) Alshehawy, A. M.; Mansour, D.-E. A.; Ghali, M.; Lehtonen, M.; Darwish, M. M. F. Photoluminescence Spectroscopy Measurements for Effective Condition Assessment of Transformer Insulating Oil. In Processes, 2021; Vol. 9.
    (90) Abed, J. Characterization and Modification of Solar Energy Water Splitting Material for Storable Fuel Generation. Khalifa University 2017.
    (91) Ausili, A.; Sánchez, M.; Gómez-Fernández, J. C. Attenuated total reflectance infrared spectroscopy: A powerful method for the simultaneous study of structure and spatial orientation of lipids and membrane proteins. Biomedical Spectroscopy and Imaging 2015, 4, 159-170. DOI: 10.3233/BSI-150104.
    (92) Wilschefski, S. C.; Baxter, M. R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin Biochem Rev 2019, 40 (3), 115-133. DOI: 10.33176/aacb-19-00024 From NLM.
    (93) Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning electron microscopy: Principle and applications in nanomaterials characterization. Handbook of materials characterization 2018, 113-145.
    (94) Vargas-Alfredo, N.; Munar-Bestard, M.; Ramis, J. M.; Monjo, M. Synthesis and Modification of Gelatin Methacryloyl (GelMA) with Antibacterial Quaternary Groups and Its Potential for Periodontal Applications. Gels 2022, 8 (10). DOI: 10.3390/gels8100630.
    (95) Estrada-Urbina, J.; Cruz-Alonso, A.; Santander-González, M.; Méndez-Albores, A.; Vázquez-Durán, A. Nanoscale Zinc Oxide Particles for Improving the Physiological and Sanitary Quality of a Mexican Landrace of Red Maize. Nanomaterials (Basel) 2018, 8 (4). DOI: 10.3390/nano8040247 From NLM.
    (96) Kadam, A. N.; Bhopate, D. P.; Kondalkar, V. V.; Majhi, S. M.; Bathula, C. D.; Tran, A.-V.; Lee, S.-W. Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity. Journal of Industrial and Engineering Chemistry 2018, 61, 78-86. DOI: https://doi.org/10.1016/j.jiec.2017.12.003.
    (97) Xiong, Y. J.; Brunson, M.; Huh, J.; Huang, A. R.; Coster, A.; Wendt, K.; Fay, J.; Qin, D. The Role of Surface Chemistry on the Toxicity of Ag Nanoparticles. Small 2013, 9 (15), 2628-2638. DOI: 10.1002/smll.201202476.
    (98) Bednar, J.; Svoboda, L.; Rybkova, Z.; Dvorsky, R.; Malachova, K.; Stachurova, T.; Matysek, D.; Foldyna, V. Antimicrobial Synergistic Effect Between Ag and Zn in Ag-ZnO center dot mSiO(2) Silicate Composite with High Specific Surface Area. Nanomaterials 2019, 9 (9). DOI: 10.3390/nano9091265.
    (99) Coll Ferrer, M. C.; Dastgheyb, S.; Hickok, N. J.; Eckmann, D. M.; Composto, R. J. Designing nanogel carriers for antibacterial applications. Acta Biomaterialia 2014, 10 (5), 2105-2111. DOI: https://doi.org/10.1016/j.actbio.2014.01.009.
    (100) Devanesan, S.; AlSalhi, M. S. Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus esculentus for Cytotoxicity and Antimicrobial Studies. International Journal of Nanomedicine 2021, 16, 3343-3356. DOI: 10.2147/ijn.S307676.
    (101) Venkatasubbu, G. D.; Baskar, R.; Anusuya, T.; Seshan, C. A.; Chelliah, R. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids and Surfaces B-Biointerfaces 2016, 148, 600-606. DOI: 10.1016/j.colsurfb.2016.09.042.
    (102) Matai, I.; Sachdev, A.; Dubey, P.; Kumar, S. U.; Bhushan, B.; Gopinath, P. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E-coli. Colloids and Surfaces B-Biointerfaces 2014, 115, 359-367. DOI: 10.1016/j.colsurfb.2013.12.005.
    (103) Arabi, F.; Imandar, M.; Negahdary, M.; Noughabi, M. T.; Akbari-dastjerdi, H.; Fazilati, M. Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann. Biol. Res. 2012, 3 (7), 3679-3685, Article. Scopus.
    (104) Durán, N.; Marcato, P. D.; De Conti, R.; Alves, O. L.; Costa, F. T. M.; Brocchi, M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society 2010, 21 (6), 949-959, Review. DOI: 10.1590/S0103-50532010000600002 Scopus.
    (105) Sifri, C. D.; Begun, J.; Ausubel, F. M.; Calderwood, S. B. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infection and immunity 2003, 71 (4), 2208-2217.
    (106) Staphylococcus aureus resistant to vancomycin--United States, 2002. MMWR Morb Mortal Wkly Rep 2002, 51 (26), 565-567. From NLM.
    (107) Kesika, P.; Karutha Pandian, S.; Balamurugan, K. Analysis of Shigella flexneri-mediated infections in model organism Caenorhabditis elegans. Scand J Infect Dis 2011, 43 (4), 286-295. DOI: 10.3109/00365548.2010.548400 From NLM.

    無法下載圖示 校內:2028-07-26公開
    校外:2028-07-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE