簡易檢索 / 詳目顯示

研究生: 李承泰
Li, Cheng-Tai
論文名稱: 擬分子動力學方法應用於隨機網點圖案設計與有限元格網產生
Random Dot Patterns and Finite Elment Mesh Generation Using Pseudo Molecular Dynamics Method
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 47
中文關鍵詞: 分子動力學格網產生隨機網點圖案導光板
外文關鍵詞: mesh generation, molecular dynamics, random dot patterns, lightguide
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   導光板是平面顯示器LCD所倚賴用來導引光源的重要元件,其表面上網點及微結構的設計是為了使導光板所傳遞的光能平均地透射出導光板表面。然而當這些網點及微結構分佈的設計太過規律化往往會造成光干涉紋(Moire)的出現。已有研究顯示,若分佈的設計能有隨機性的排列就能有效地避免Moire現像的產生。本研究便是以此為出發點,提出一個利用擬分子動力學方法及運算技巧並創造一個晶格邊界處理模式的演算法則,作為一個能達成疏密可控、均佈性佳與填充率高之隨機網格圖案設計技巧。

      有限元素法發展至今,其前處理程序-格網產生(mesh generation)技術的良窳關係到演算結果的準確性。亦即所產生的元素是否能對格網物件能有高度的適應性,都能保有良好的元素形狀。過去已有研究亦是利用分子動力學方法進行物件的格網化,而本研究所提出之演算法則應用在此一領域除了能獲得前人所掌握之優點外更融合用於光學網點設計的概念,期使能建構出對二維平面、三維曲面與三維實體的物件都能產生良好形狀之三角元素與六邊立體元素的設計架構。

     Lightguide is an important component which guide light source on LCD. There are dots and microstructures on its surface in order to uniform the light rays from the lightguide. But while dots and microstructures fall into a regular pattern could result in moire pattern. Recently , Ide et al discovered that random-arrangement pattern eliminate efficiently a moire pattern. In this thesis , our purpose began from this, to bring an algorithm with density controllable ; good uniformity and high filling-ratio for random-arrangement pattern design technique using pseudo-molecular-dynamics method and calculating skills.

     Finite element method have developed several decades. Its preprocess technique-mesh-generation , concerned with accuracy of calculation. The meaning is whether all of elements have well-shaped. In the past , Shimada et al have developed a technique for finite element mesh-generation using concept of molecular dynamics. In this thesis , we introduce concept of design of random dot pattern , and utilize molecular dynamics technique to make mesh-generation. We will expect the method to produce well-shaped elements successfully on the two-dimension plane surface ; three-dimension curved surface and solid.

    第一章 緒論 1-1 導光板網點與有限元格網之介紹 1 1-2 研究動機及目的 3 1-3 文獻回顧 4 第二章 系統模型與演算架構 2-1 系統模型的建立 7 2-2 數學架構 9 2-3 演算架構 14 2-3-1 力控制參數的作用 15 2-3-2 網點跨越晶格邊界的處理 16 2-4 應用於格網產生 19 第三 分析與討論 3-1 隨機分佈之均佈度分析 22 3-2 密度變化對網點分佈的影響 26 3-3 Square-RDF分析 28 3-4 網點最高填充密度分析 35 3-5 晶格數量與網點數量對運算效能的影響 37 3-6 格網產生應用例子 39 第四章 結論與展望 4-1 結論與建議 42 4-2 未來展望 42 參考文獻 44 附錄 47

    [1]Max Born and Emil Wolf, Principles of Optics, Cambridge university press,7th edition.
    [2]Saeed Moaveni, Finite element analysis :theory and application with ANSYS, Prentice Hall, 1999.
    [3]I. Amidror, The Theory of The Moire´ Phenomenon, (Kluwer Academic, Dordrecht, Netherlands, 2000)
    [4]T. Ide´, H. Mizuta, H. Numata, Y. Taira, M. Suzuki, M. Noguchi, and Y. Katsu,“Dot pattern generation technique using molecular dynamics,” J. Opt. Soc. Am, A, 248-255 (2003).
    [5]T. Ide´, H. Mizuta, H. Numata, Y. Taira, M. Suzuki, M. Noguchi, and Y. Katsu,“A novel dot-pattern generation to improve luminance uniformity of LCD backlight,”Journal of the SID,11/4 (2003)
    [6]Tsuyoshi Ide, Hideyuki Mizuta, Yoichi Taira and Akiko Nishikai, U.S. Patent No.6,865,325 (2005).
    [7]G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, "Intermolecular Forces", Oxford University Press,(1987)
    [8]Robert A. Ulichney, “Dithering with Blue Noise”, Proceedings of The IEEE, 76 , No. 1 , (1988)
    [9]Werner Purgathofer, Robert F. Tobler, Manfred Geiler, “Forced Random Dithering: Improved Threshold Matrices for Ordered Dithering”, IEEE,(1994).
    [10]Jarvis, J.F., Judice, C.N., Ninke, W. H.: “A Survey of Techniques for Display of Continuous Tone Pictures on Bilevel Displays”, Computer Graphics and Image Processing, No.5, pp.13-40,(1976).
    [11]Lippel, J.O., Kurland, M., “The effect of dither on luminance quantization of pictures”, IEEE Transactions on Communications and Technology, Vol. COM-19, pp.879-888, (1971).
    [12]Knuth, D.E., “Digital Halftones by Dot Diffusion”, ACM Transactions on Graphics, Vol 6, No. 4, pp.245-273, (1987).
    [13]J.P. Allebach, B. Liu, “Random Quasi-periodic halftone process”, J. Opt. Soc. Amer. Vol. 66, pp. 909-917,(1976).
    [14]J.P. Allebach, B. Liu, “Analysis of halftone dot profile and aliasing in the discrete binary representation on images” , J. Opt. Soc. Amer. Vol. 67, pp. 1147-1154, (1977).
    [15]W. F. Schreiber, D.E. Troxl, “Transformation between continuous and discrete representation of images: A perceptual approach”, IEEE Trans. Pattern Anal., Vol. PAMI-7, No. 2, pp.178-186, (1985).
    [16]L. G. Roberts, “Picture coding using pseudo-random noise”, IRE Trans. Informat. Theory, Vol. IT-8, pp. 145-154, (1962).
    [17]K Ho-Le, “Finite element mesh generation methods: a review and classification”, Computer-aided design, Vol. 20, No. 1, pp. 27-38, (1988)
    [18]Jaroslav Mackerle,”2D and 3D finite element meshing and remeshing: A bibliography(1990-2001)”, Engineering Computations, Vol. 18, No. 8, pp. 1108-1197, (2001)
    [19]Kenji Shimada, David C. Gossard, ” Automatic triangular mesh generation of trimmed parametric surface for finite element analysis”, Computer Aided Geometric Design, Vol. 15, pp. 199-222, (1998).
    [20]Chi-Chuan Hwang, Yeau-Ren Jeng, Yu-Lin Hsu and Jee-Gong Chang, "Molecular Dynamics Simulation of Microscopic Droplet spread on Rough Surfaces," Journal of the Physical Society of Japan, 70, 2626-2632 (2001).
    [21]Chi-Chuan Hwang, Jee-Gong Chang, Jian-Ming Lu and Hong-Chang Lin, "Dual Damascene Simulation for Ionized Physical Vapor Deposition Process: Investigation on Incident Energy and Via Geometry Effects", Journal of the Physical society of Japan, 72(12), pp.3151-5157, (2003)
    [22]Ming-Horng Su, Chi-Chuan Hwang, Jee-Gong Chang and Shi-Hao Wang, "Microstructure evolution analysis in Co/Cu layers during the annealing process," Journal of Applied Physics, 93 (8), 4566-4575 (2003)
    [23]J. M. Haile, Molecular Dynamics Simulation, (John Wiley & Sons, New York, 1992)
    [24]D. C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press, 1995)
    [25]J. M. Goodfellow et al., "Molecular dynamics", CRC Press,(1990)..
    [26]Timothy Lambert, “An optimal algorithm for realizing a Delaunay triangulation”, Information Processing Letters, Vol. 62, pp. 245-250, (1997).
    [27]S. Tezuka, Uniform Random Numbers: Theory and Practice (Kluwer Academic, Boston, 1995).
    [28]http://www.compsoc.man.ac.uk/~lucky/Democritus/Theory/rdf.html

    下載圖示 校內:立即公開
    校外:2005-08-02公開
    QR CODE