簡易檢索 / 詳目顯示

研究生: 陳楷升
Chen, Kai-Sheng
論文名稱: 利用相位共軛補償光纖通信系統之非線性效應
Practical Phase Conjugation for Compensating Fiber Nonlinearity over Optical Communication Systems
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 49
中文關鍵詞: 自相位元調變交叉相位調變光相位共軛柯爾效應
外文關鍵詞: Self-phase modulation, Cross-phase modulation, Optical phase conjugation, Kerr effect
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自相位元調變及交叉相位調變為光纖通信系統中主要之非線性效應損害。在非線性光通道中,光反射係數會受到光信號功率影響而有所改變,此柯爾效應觸發自相位元調變及交叉相位調變,擴展光信號之頻譜,進而影響整體通信系統效能。
    在本論文中,利用光相位共軛之原理,我們提出了一種光纖非線性效應之補償機制,以減少光信號在傳輸過程中之相位失真。在光纖的中段,一個光相位調變器用來調變輸入光信號之相位。此相位調變的大小正比於輸入光信號之功率,且其正負號與自相位元調變引入之相位偏移相反。因此,在第一段光纖,由光信號功率波動及自相位元調變引入之相位雜訊可以被第二段光纖之非線性相位失真補償。
    在系統模擬方面,利用數值分析最佳化光相位調變器之參數。一個利用開關鍵移調變,搭配非歸零碼之光通訊數位系統,在有色散補償之光纖通道下,藉由本文提出之非線性效應之補償方式,在入射光功率及傳輸距離皆可有明顯的改善。

    Self-phase modulation (SPM) and cross-phase modulation (SPM) are leading nonlinear transmission penalty in optical communication systems. In nonlinear optical media, an interesting phenomenon of the intensity dependence of the refractive index occurs through SPM or XPM, which leads to spectral broadening of optical pulses and therefor degrade system performance.
    A novel scheme for fiber nonlinearity compensation based on the principles of optical phase conjugation (OPC) is proposed to reduce the phase distortion in optical communications. A phase modulator is used to modulate the phase of the data pulses in the middle of fiber spans. The magnitude of the phase modulation is proportional to the detected pulse intensity, and the sign is opposite to that of the nonlinear phase shift caused by self-phase modulation. Thus, the nonlinear phase noise induced by amplitude fluctuation and SPM in the first-half fiber is partially compensated for in the second-half fiber.
    Using an optimum value of the phase deviation of the optical phase modulator, we show by numerical simulations that a non-return-to-zero (NRZ) format transmission for 720 km in dispersion-managed system at 40 Gb/s with such nonlinearities compensation can provide greater than 2 dB increase in launch power .

    ABSTRACT IV CONTENTS V LIST OF FIGURES VII LIST OF TABLES IX Chapter 1. Introduction 1 1.1. Optical Nonlinearities Classifications 2 1.2. Nonlinearities in Optical Fibers 3 1.3. Impact of Nonlinear Effects on Optical Communications 5 1.4. Compensation of Fiber Nonlinearities 8 Chapter 2. Theoretical Analysis of Nonlinear Refraction Effects 10 2.1. Principle of Self-Phase Modulation 14 2.2. Effects of SPM on Optical Pulse Propagation 18 2.3. Principle of Cross-Phase Modulation 22 2.4. Effects of XPM on Optical Pulse Propagation 25 Chapter 3. Proposed Nonlinearity Compensating Schemes 29 3.1. Principle of Nonlinearity Compensating Operation 29 3.2. Fiber Nonlinearity Compensation of SPM 32 3.3. Fiber Nonlinearity Compensation of XPM 35 Chapter 4. Simulation Results on the Compensated Systems 39 4.1. Optimization for Nonlinear Coefficient 42 4.2. Performance against Launch Power 44 4.3. Improvement in Transmission Distance 45 Chapter 5. Conclusions 46 References 47

    [1] J. Toulouse, “Optical nonlinearities in fibers: Review, recent examples, and systems applications,” J. Lightwave Technol., vol. 23, pp. 3625-3641, Nov. 2005.
    [2] N. Bloembergen, Nonlinear Opics (Bengamin, Reading, MA, 1977), Chap. 1.
    [3] Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
    [4] Govind P. Agrawal, Fiber-Optic Communications Systems, second edition.
    [5] K. Roberts, L. Chuandong, L. Strawczynski, M. O. Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett., vol. 18, no. 2, pp. 403-405, Jan. 2006.
    [6] Gerd Keiser, Optical Fiber Communications, fourth edition.
    [7] I. N. Sisakyan and A. B. Shvartsburg, Sov. J. Quantum Electron. 14, (1984).
    [8] F. Shimizu, Phys. Rev. Lett. 19, 1097 (1967).
    [9] E. P. Ippen, C. V. Shank, and T. K. Gustafson, Appl. Phys. Lett. 24, 190 (1974).
    [10] R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
    [11] R. Cubeddu, R. Polloni, C. A. Sacchi, and O. Svelto, Phys. Rev, A 2, 1955 (1970).
    [12] C. H. Lin and T. K. Gustafson, IEEE J. Quantum Electron. 8, 429 (1972).
    [13] S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, in Laser handbook, vol. 2,
    F. T. Arecchi and E. O. Schulz-Dubois, Eds. (North-Holland, Amesterdan, 1972), Chap. E3.
    [14] F. Forghiri, R. W. Tkach, and A. R. Chraplyvy, "Fiber Nonlinearities and Their Impact on Transmission Systems," in I.P. Kaminow and T. L. Koch, eds., Optical Fiber Telecommunications-III, vol. A, Academic, New York, 1997.
    [15] M. Wu and W. I. Way, "Fiber nonlinearity limitations in ultra-dense WDM systems," J. Lightwave Technology, vol. 22, pp. 1483-1468, June 2004.
    [16] G. P.Agrawal, Nonlinear Fiber Optics, Academic, San Diego, CA, 4th ed., 2006.
    [17] J. T. Manassah, AppL. Opt. 26, 3747 (1987).
    [18] A. R. Chraplyvy and J. Stone, Electron. Lett. 20, 996 (1984).
    [19] R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, and P.P. Ho, Opt. Lett. 14, 626 (1986).
    [20] G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Phys. Rev. A 39, 5063 (1989).
    [21] J. Hansryd, J. Howe, and C. Xu, “Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 232–235, Jan. 2005.
    [22] P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri, and P. Kumar, “SOAbased regenerative amplification of phase noise degraded DPSK signals,” presented at the Optical Fiber Communication (OFC), Anaheim, CA, 2005, Paper PDP34.
    [23] S. L. Jansen, D. van den Borne, C. Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” presented at the Optical Fiber Communication (OFC), Anaheim, CA, 2005, Paper OThO5.
    [24] A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett., vol. 4, no. 2, pp. 52–54, Feb. 1979.
    [25] S. Y. Set, R. Girardi, B. E. Riccardi, B. E. Olsson, M. Puleo, M. Ibsen, R. I. Laming, P.A. Andrekson, F. Cisternino, and H. Geiger, “40 Gb/s field transmission over standard fibre using midspan spectral inversion for dispersion compensation,” Electron. Lett., vol. 35, no. 7, pp. 581–582, Apr. 1999.
    [26] S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightw. Technol., vol. 14, no. 3, pp. 243–248, Mar. 1996.
    [27] J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tb/s (103 × 10 Gb/s) signals in PPLN waveguide,” Electron. Lett., vol. 39, no. 15, pp. 1144–1145, Jul. 2003.
    [28] S. L. Jansen, G.-D. Khoe, H. de Waardt, S. Spalter, C.-J. Weiske, A. Schopflin, S. J. Field, H. E. Escobar, and M. H. Sher, “Mixed data rate and format transmission (40 Gb/s NRZ, 40 Gb/s duobinary, 10 Gb/s NRZ) using mid-link spectral inversion,” Opt. Lett., vol. 29, no. 20, pp. 2348–2350, Oct. 2004.
    [29] A. Yariv, D. Fekete, and D. M. Pepper, Opt. Lett. 4, 52 (1979).
    [30] S. watanabe, N. Saito, and T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
    [31] C. Xu and X. Liu, "Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmissing,"opt. lett., vol. 27, No. 18, Sep. 15, 2002.
    [32] L. B. Du, and A. J. Lowery, "Practical XPM Compensation Method for Coherent Optical OFDM Systems," I EEE Photon. Technol. Lett., vol. 22, No. 5, Mar. 1, 2020.
    [33] A. J. Lowery, "Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM," Optics Express, vol. 15, No. 20 Oct. 20

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE