| 研究生: |
黃韋茹 Huang, Wei-Ru |
|---|---|
| 論文名稱: |
蟲草素增強放射敏感性以誘導小鼠萊式腫瘤細胞凋亡 Cordycepin enhances radiosensitivity to induce apoptosis in mouse Leydig tumor cells |
| 指導教授: |
黃步敏
Huang, Bu-Miin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 蟲草素 、放射線 、小鼠萊式腫瘤細胞 、細胞凋亡 、細胞自噬作用 |
| 外文關鍵詞: | cordycepin, radiation, mouse Leydig tumor cells, apoptosis, autophagy |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蟲草素 (Cordycepin) (3-脫氧腺苷) 是中藥冬蟲夏草中的主要具有功能成分。研究表明,蟲草素可以調控多種信號通路,誘導與凋亡和/或自噬相關的癌細胞死亡。最近的研究還表明,蟲草素可以增加子宮頸癌細胞對放射線的敏感性,促進細胞死亡。因此,我們假設蟲草素可以分別增強放射敏感性以誘導小鼠萊式腫瘤細胞和正常細胞的凋亡,並且研究其相關機制。結果顯示,在24小時,通過增加蟲草素或放射線 (IR) 單獨處理劑量,會顯著降低MA-10和TM3細胞的存活率。而且,蟲草素與輻射處理組則進一步證明蟲草素與IR具有協同作用,可以更顯著的降低MA-10和TM3細胞的存活率。此外,群落形成測定方法顯示,與單獨處理IR的細胞相比,聯合處理蟲草素和IR會顯著降低細胞存活率,這表明蟲草素可增強MA-10小鼠萊迪希腫瘤細胞的放射敏感性。另外,流式細胞儀檢測結果表明,蟲草素單獨使MA-10細胞產生S phase arrest,合併IR和蟲草素的處理則可誘導MA-10和TM3細胞產生G2 / M phase arrest,而且sub G1 phase 的細胞比例在24小時合併處理IR和蟲草素時,會分別增加至38%和9%,這現象暗示著,蟲草素和IR的處理在兩種類型的細胞中均會誘導細胞死亡。此外,western blotting的結果顯示IR和蟲草素的合併處理會增加MA-10細胞中Cleaved caspase-8 / -9 / -3、PARP、Cytochrome c蛋白的表達和減少Bcl-2蛋白的表達,但是在TM3細胞中不會產生表達。而且,蟲草素和IR會藉由調節MA-10細胞中細胞週期相關蛋白Cyclin E、Cyclin A,CDK4,CDK2和CDK1影響細胞週期,進而誘導細胞週期停滯和細胞死亡。此外,100 µM蟲草素和4 Gy IR處理MA-10細胞24小時可誘導GRP78、p-EIF2α、p-IRE1α 和 CHOP的表達增加促進細胞凋亡。有趣的是,在處理蟲草素24小時後,會增加TM3細胞中LC3,Atg5,Atg12-Atg5和p62的表達,這說明蟲草素可能通過誘導TM3細胞自噬而導致細胞死亡。綜上所述,蟲草素會增加放射線的敏感性,並分別透過誘導MA-10細胞走向凋亡,而TM3細胞則可能透過自噬作用,進而造成細胞死亡。
Cordycepin, a 3-deoxyadenosine, is the predominant functional component of the fungus Cordyceps sinensis, a traditional Chinese medicine. Studies have demonstrated that cordycepin could modulate multiple signaling pathways to induce cancer cell death related to apoptosis and/or autophagy. Recent study has also shown that cordycepin could increase radiosensitivity in cervical cancer cells to promote apoptotic cell death. Hence, we hypothesized that cordycepin could enhance radiosensitivity to induce apoptosis in mouse Leydig tumor and normal cells, respectively, and in the present study with the mechanism investigations. Results showed that cell viabilities among MA-10 and TM3 cells were significantly decreased by increasing dosage of cordycepin or IR alone treatments in 24 hr. Cordycepin combined with radiation treatment further demonstrated synergistic effect reducing cell viability on MA-10 and TM3 cells, respectively. Moreover, clonogenic assay showed that the combined treatment of cordycepin and IR resulted in significantly decrease of survival fractions compared to cells treated with IR alone, indicating that cordycepin could enhance radiosensitivity in MA-10 mouse Leydig tumor cells. In addition, flow cytometry assays showed that cordycepin alone may cause S phase arrest in MA-10 cells, and the combined radiation and cordycepin treatment could induce G2/M phase arrest in MA-10 and TM3 cells, while the percentages of sub G1 phase cell showed 38% and 9% in 24 hr treatments, respectively, implying cordycepin and radiation did induce cell death in both cell types. Moreover, western blotting results showed that combination treatment of radiation and cordycepin increased cleaved caspase-8 /-9 /-3, PARP and Cytochrome c, and decreased Bcl-2 protein expressions in MA-10 cells, but not in TM3 cells. In addition, cordycepin and radiation could affect cell cycle by regulating cell cycle related proteins; Cyclin E, Cyclin A, CDK4, CDK2 and CDK1 to induce cell cycle arrest and cell death in MA-10 cells. Moreover, 100 μM cordycepin and 4 Gy IR for 24 hr could increase the expression of GRP78, p-EIF2α, p-IRE1α and CHOP to promote apoptosis in MA-10 cells. Interestingly, cordycepin in 24 hr treatment increased the expression of LC3, Atg5, Atg12-Atg5 and p62 in TM3 cells, illustrating cordycepin could induce TM3 cell death through autophagy. In summary, cordycepin could enhance radiosensitivity to induce cell death in MA-10 cells through apoptosis and in TM3 cells through autophagy, respectively.
Acharya BR, Bhattacharyya S, Choudhury D, Chakrabarti G (2011) The microtubule
depolymerizing agent naphthazarin induces both apoptosis and autophagy in A549 lung cancer cells. Apoptosis 16:924–39
Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 117:326–36
Aramwit P, Porasuphatana S, Srichana T, Nakpheng T (2015) Toxicity evaluation of cordycepin and its delivery system for sustained in vitro anti-lung cancer activity. Nanoscale Res. Lett. 10:152
Arisan ED, Obakan P, Coker-Gurkan A, Calcabrini A, Agostinelli E, Unsal NP (2014) CDK inhibitors induce mitochondria-mediated apoptosis through the activation of polyamine catabolic pathway in LNCaP, DU145 and PC3 prostate cancer cells. Curr. Pharm. Des. 20:180-8
Ashkenazi A (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19:325–31
Bertram KA, Bratloff B, Hodges GF, Davidson H (1991) Treatment of malignant Leydig cell tumor. Cancer 68:2324-9
Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171:603–14
Borrego-Soto G, Ortiz-López R, Rojas-Martínez A. (2015) Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet. Mol. Biol. 38:420-32
Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M (1999) Role of poly (ADP-ribose) polymerase (PARP) cleavage in apoptosis. J. Biol. Chem. 274:22932–40
Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J. Cell Mol. Med. 7:249-57
Chang HY, Shih MH, Huang HC, Tsai SR, Juan HF, Lee SC (2013) Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells. PLoS One. 8:e54117
Chen KC, Yang TY, Wu CC, Cheng CC, Hsu SL, Hung HW, Chen JW, Chang GC (2014) Pemetrexed induces S-phase arrest and apoptosis via a deregulated activation of Akt signaling pathway. PLoS One. 9:e97888
Chiu HW, Yeh YL, Wang YC, Huang WJ, Ho SY, Lin P, Wang YJ (2016) Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol. Cancer 15:46
Cho SH, Kang IC (2018) The inhibitory effect of Cordycepin on the proliferation of cisplatin-resistant A549 lung cancer cells. Biochem. Biophys. Res. Commun. 498:431-6
Choi S, Lim MH, Kim KM, Jeon BH, Song WO, Kim TW (2011) Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol. Appl. Pharmacol. 257:165-73
Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22:27-55
Collins K, Jacks T, Pavletich NP (1997) The cell cycle and cancer. Proc. Natl. Acad .Sci. USA. 94:2776–8
Czarny P, Pawlowska E, Bialkowska-Warzecha J, Kaarniranta K, Blasiak J (2015) Autophagy in DNA damage response. Int. J. Mol. Sci. 16:2641-62
Das G, Shravage BV, Baehrecke EH (2012) Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol. 4:a008813
DiPaola RS (2002) To arrest or not to G2-M cell-cycle arrest. Clin. Cancer Res. 8:3311-4
Donovan M, Cotter TG (2004) Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta. 1644:133-47
Dunne AL, Price ME, Mothersill C, McKeown SR, Robson T, Hirst DG (2003) Relationship between clonogenic radiosensitivity, radiation-induced apoptosis and DNA damage/repair in human colon cancer cells. Br. J. Cancer. 89:2277-83
Endo M, Mori M, Akira S, Gotoh T (2006) C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. J. Immunol. 176:6245-53
Engidawork E, Gulesserian T, Yoo BC, Cairns N, Lubec G (2001) Alteration of caspases and apoptosis-related proteins in brains of patients with Alzheimer's disease. Biochem. Biophys. Res. Commun. 281:84-93
Fossa SD, Horwich A, Russell JM, Roberts JT, Cullen MH, Hodson NJ, Jones WG, Yosef H, Duchesne GM, Owen JR, Grosch EJ, Chetiyawardana AD, Reed NS, Widmer B, Stenning SP (1999) Optimal planning target volume for stage I testicular seminoma: a Medical Research Council randomized trial. J. Clin. Oncol. 17:1146 –54
Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat. Protoc. 1:2315-9
Glick D, Barth S, Macleod KY (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221:3–12
Gogineni VR, Nalla AK, Gupta R, Dinh DH, Klopfenstein JD, Rao JS (2011) Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant meningioma cells. Cancer Lett. 313:64–75
Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim. Biophys. Acta. 1757:639-47
Green LM, Reade JL, Ware CF (1984) Rapid colorimetric assay for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines. J. immunol. Methods 70:257-68
Gupta S (2000) Molecular steps of cell suicide: an insight into immune senescence. J. Clin. Immunol. 20:229-40
Häcker G (2000) The morphology of apoptosis. Cell Tissue Res. 301:5–17
Han Y, Wang Y, Xu HT, Yang LH, Wei Q, Liu Y, Zhang Y, Zhao Y, Dai SD, Miao Y, Yu JH, Zhang JY, Li G, Yuan XM, Wang EH (2009) X-radiation induces non-small-cell lung cancer apoptosis by upregulation of axin expression. Int. J. Radiat. Oncol. Biol. Phys. 75:518–26
Hanks GE, Peters T, Owen J (1992) Seminoma of the testis: long-term beneficial and deleterious results of radiation. Int. J. Radiat. Oncol. Biol. Phys. 24:913–9
Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ (2004) Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. Embo. J. 23:2134–45
Hiraoka W, Tanabe K, Kuwabara M, Sato F, Matsuda A, Ueda T (1988) Sensitization of X-irradiated Chinese hamster V79 cells by derivatives of pyrimidine
nucleosides. J. Radiat. Res. 29:246–54
Horwich A, Bell J (1994) Mortality and cancer incidence following radio-therapy for seminoma of the testis. Radiother. Oncol. 30:193–8
Huang BM, Pan BS, Chang MM (2018) Cordycepin induced unfolded protein response-dependent cell death with drug resistance phenomenon in MA-10 mouse testicular cancer cells. J. Nutr. Food Sci. doi: 10.4172/2155-9600-C1-054
Huang SP, Chien JY, Tsai RK (2015) Ethambutol induces impaired autophagic flux and apoptosis in the rat retina. Dis. Model Mech. 8:977-87
Hwang JH, Park SJ, Ko WG, Kang SM, Lee DB, Bang J, Park BJ, Wee CB, Kim DJ, Jang IS, Ko JH (2017) Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/Slug signaling pathway. Am. J. Cancer Res. 7:417-32.
Horwich A, Bell J. Mortality and cancer incidence following radio-
therapy for seminoma of the testis. Radiother Oncol 1994;30:193–8.
Hwang A, Muschel RJ (1998) Radiation and the G2 phase of the cell cycle. Radiat. Res. 150:52-9
Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK, Lee JD, Yoo YH, Choi YH (2011) Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol. In. Vitro. 25:817-24
Jiang P, Mizushima N (2015) LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75:13-8
Jonathan EC, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr. Opin. Chem. Biol. 77–83
Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 63:2103-8
Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11:448-57
Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, Schulman BA, Xu J, Semple I, Ro SH, Kim B, Mavioglu RN, Tolun A, Jipa A, Takats S, Karpati M, Li JZ, Yapici Z, Juhasz G, Lee JH, Klionsky DJ, Burmeister M (2016) Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. eLife. 5:e12245
Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am. J. Physiol. Renal Physiol. 295:323–34
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata JI, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura SI, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue ZY, Uchiyama Y, Kominami E, Tanaka K (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–63
Kondrashov A, Meijer HA, Barthet-Barateig A, Parker HN, Khurshid A, Tessier S, Sicard M, Knox AJ, Pang L, de Moor CH (2012) Inhibition of polyadenylation reduces inflammatory gene induction. RNA 18:2236–50
Lee HH, Kim SO, Kim GY, Moon SK, Kim WJ, Jeong YK, Yoo YH, Choi YH (2014) Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells. Environ. Toxicol. Pharmacol. 38:239-50
Lee SJ, Kim SK, Choi WS, Kim WJ, Moon SK (2009) Cordycepin causes
p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch. Biochem. Biophys. 490:103–9
Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183-92
Li Y, Li R, Zhu S, Zhou R, Wang L, Du J, Wang Y, Zhou B, Mai L (2015) Cordycepin induces apoptosis and autophagy in human neuroblastoma SK-N-SH and BE(2)-M17 cells. Oncol. Lett. 9:2541–7
Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, Xie M, Jiang N, May H, Kyrychenko V, Schneider JW, Gillette TG, Hill JA (2016) Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation 133:1668-87
Liao Y, Ling J, Zhang G, Liu F, Tao S, Han Z, Chen S, Chen Z, Le H (2015) Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle 14:761-71
Lin L, Baehrecke EH (2015) Autophagy, cell death, and cancer. Mol. Cell Oncol. 2:e985913
Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C (2015) The Chemical Constituents and Pharmacological Actions of Cordyceps sinensis. Evid. Based Complement. Alternat. Med. 2015:575063
Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell 104:487–501
Logue SE, Martin SJ (2008) Caspase activation cascades in apoptosis. Biochem. Soc. Trans. 36(Pt 1):1-9
Logue SE, Cleary P, Saveljeva S, Samali A (2013) New directions in ER stress-induced cell death. Apoptosis 18:537-46
Lomax ME, Folkes LK, O’Neill P (2013) Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin. Oncol. 25:578-85
Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol. 318:1351–65
Matassov D, Kagan T, Leblanc J, Sikorska M, Zakeri Z (2004) Measurement of apoptosis by DNA fragmentation. Methods Mol. Biol. 282:1-17
Milose JC, Filson CP, Weizer AZ, Hafez HS, Montgomery JS (2012) Role of biochemical markers in testicular cancer: diagnosis, staging, and surveillance. Open Access J. Urol. 4:1–8
Miller BA, Ries LAG, Hankey BF, Kosary CL, Harras A, Devesa SS (1993) SEER, Cancer Statistics Review: 1973–1990. National Cancer Institute National Institutes of Health Pub. No. 93-2789
Miyake N, Chikumi H, Takata M, Nakamoto M, Igishi T, Shimizu E (2012) Rapamycin induces p53-independent apoptosis through the mitochondrial pathway in non-small cell lung cancer cells. Oncol. Rep. 28:848-54
Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313-26
Moller H, Mellemgaard A, Jacobsen GK, Pedersen D, Storm HH (1993) Incidence of second primary cancer following testicular cancer. Eur. J. Cancer 29A:672-6
Nakamura K, Shinozuka K, Yoshikawa N (2015) Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J. Pharmacol. Sci. 127:53-6
Naumov S, von Sonntag C (2008) The energetics of rearrangement and water elimination reactions in the radiolysis of the DNA bases in aqueous solution (eaq- and *OH Attack): DFT calculations. Radiat. Res. 169:355-63
Nishitoh H (2012) CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem. 151:217-9
Oslowski CM, Urano F (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490:71-92
Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17:93-115
Pan BS, Wang YK, Lai MS, Mu YF, Huang BM (2015) Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/ AKT signaling pathways. Sci. Rep. 5:13372
Panganiban RAM, Snow AL, Day RM (2013) Mechanisms of radiation toxicity in transformed and non-transformed cells. Int. J. Mol. Sci. 14:15931-58
Pavio N, Romano PR, Graczyk TM, Feinstone SM, Taylor DR (2003) Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2alpha kinase PERK. J. Virol. 77:3578-85
Petersen PM., Skakkebaek NE., Rorth M, Giwercman A (1999) Semen quality and reproductive hormones before and after orchiectomy in men with testicular cancer. J. Urol. 161:822-6
Pietkiewicz S, Schmidt JH, Lavrik IN (2015) Quantification of apoptosis and necroptosis at the single cell level by a combination of imaging flow cytometry with classical Annexin V/propidium iodide staining. J. Immunol. Methods 423:99-103
Pollycove M, Feinendegen LE (2003) Radiation-induced versus endogenous DNA damage: Possible effect of inducible protective responses in mitigating endogenous damage. Hum. Exp. Toxicol. 22:290-306
Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Methods Mol. Biol. 281:301-11
Richiardi L, Sc’elo G, Boffetta P, Hemminki K, Pukkala E, Olsen JH, Weiderpass E, Tracey E, Brewster DH, McBride ML, Kliewer EV, Tonita JM, Kirn VP, Seng CK, Jonasson JG, Martos C, Brennan P (2006) Second malignancies among survivors of germ-cell testicular cancer: A pooled analysis between 13 cancer registries. Int. J. Cancer 120:623-31
Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J. Vis. Exp. 50:2597
Ron D, Hubbard SR (2008) How IRE1 reacts to ER stress. Cell 132:24-6
Roumaud P, Rwigemera A, Martin LJ (2017) Transcription factors SF1 and cJUN cooperate to activate the Fdx1 promoter in MA-10 Leydig cells. J. Steroid Biochem. Mol. Biol. 171:121-32
Rodvold JJ, Chiu KT, Hiramatsu N, Nussbacher JK, Galimberti V, Mahadevan NR, Willert K, Lin JH, Zanetti M (2017) Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells. Sci. Signal 10: doi:10.1126
Rowley MJ, Leach DR, Warner GA, Heller CG (1974) Effect of graded doses of ionizing radiation on the human testis. Radiat. Res. 59:665-78
Rozpędek W, Pytel D, Mucha B, Leszczyńska H, Alan Diehl J, Majsterek I (2016) The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med. 16:533-44
Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim. Biophys. Acta. 1833:3460-70
Santana-Codina N, Mancias JD, Kimmelman AC (2017) The role of autophagy
in cancer. Annu. Rev. Cancer Biol. 1:19–39
Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45:528-37
Sarvothaman S, Undi RB, Pasupuleti SR, Gutti U, Gutti RK (2015) Apoptosis: role in myeloid cell development. Blood Res. 50:73–9
Schindler AJ, Schekman R (2009) In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc. Natl. Acad. Sci. USA. 106:17775–80
Seiwert TY, Salama JK, Vokes EE (2007) The concurrent chemoradiation paradigm--general principles. Nat. Clin. Pract. Oncol. 4:86-100
Seong DB, Hong S, Muthusami S, Kim WD, Yu JR, Park WY (2016) Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur. J. Pharmacol. 771:77-83
Shawgo ME, Shelton SN, Robertson JD (2008) Caspase-mediated Bak activation and cytochrome c release during intrinsic apoptotic cell death in Jurkat cells. J. Biol. Chem. 283:35532–8
Sheen JH, Woo JK, Dickson RB (2003) c-Myc alters the DNA damage-induced G2/M arrest in human mammary epithelial cells. Br. J. Cancer 89:1479-85
Sherr CJ (1993) Mammalian G1 cyclins. Cell 73:1059-65
Shimizu S, Yoshida T, Tsujioka M, Arakawa S (2014) Autophagic cell death and cancer. Int. J. Mol. Sci. 3145-53
Skommer J, Brittain T, Raychaudhuri S (2010) Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death. Apoptosis 15:1223-33
Stephenson WT, Poirier SM, Rubin L, Einhorn LH (1995) Evaluation of reproductive capacity in germ cell tumor patients following treatment with cisplatin, etoposide, and bleomycin. J. Clin. Oncol. 13:2278-80
Strober W (2015) Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 111:A3.B.1-3
Sutherland RL, Musgrove EA (2009) CDK inhibitors as potential breast cancer therapeutics: new evidence for enhanced efficacy in ER+ disease. Breast Cancer Res. 11:112
Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7:880-5
Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13:184-90
Tamulevicius P, Wang M, Iliakis G (2007) Homology-directed repair is required for the development of radioresistance during S Phase: interplay between double-strand break repair and checkpoint response. Radiat. Res. 167:1-11
Tian X, Li Y, Shen Y, Li Q, Wang Q, Feng L (2015) Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol. Lett. 10:595-9
Traganos F, Darzynkiewicz Z (1994) Lysosomal proton pump activity: supravital cell staining with acridine orange differentiates leukocyte subpopulations. Methods Cell Biol. 41:185-94
Travis LB, Curtis RE, Storm H, Hall P, Holowaty E, Van Leeuwen FE, Kohler BA, Pukkala E, Lynch CF, Andersson M, Bergfeldt K, Clarke EA, Wiklund T, Stoter G, Gospodarowicz M, Sturgeon J, Fraumeni JF Jr, Boice JD Jr. (1997) Risk of second malignant neoplasms among long-term survivors of testicular cancer. J. Natl. Cancer Inst. 89:1429-39
Tuli HS, Sharma AK, Sandhu SS, Kashyap D (2013) Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 93:863-9
Tuli HS, Kashyap D, Sharma AK (2015) Cordycepin: A Cordyceps metabolite with promising therapeutic potential. Fungal Metab. 1-22
Verheij M, Bartelink H (2000) Radiation-induced apoptosis. Cell Tissue Res. 301, 133-42
Wang J, Zhu C, Song D, Xia R, Yu W, Dang Y, Fei Y, Yu L, Wu J (2017) Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity. Cell Death Discov. 3:17034
Wang P, Henning SM, Heber D (2010) Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One. 5:e10202
Wang XA, Xiang SS, Li HF, Wu XS, Li ML, Shu YJ, Zhang F, Cao Y, Ye YY, Bao RF, Weng H, Wu WG, Mu JS, Hu YP, Jiang L, Tan ZJ, Lu W, Wang P, Liu YB (2014) Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules 19:11350-65
Wesierska-Gadek J, Borza A, Komina O, Maurer M (2009) Impact of roscovitine, a selective CDK inhibitor, on cancer cells: bi-functionality increases its therapeutic potential. Acta. Biochim. Pol. 56:495-501
Williams GH, Stoeber K (2012) The cell cycle and cancer. J. Pathol. 226:352-64
Willis MS, Townley-Tilson WH, Kang EY, Homeister JW, Patterson C (2010) Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circ. Res. 106:463-78
Wu F, Xu HD, Guan JJ, Hou YS, Gu JH, Zhen XC, Qin ZH (2015) Rotenone impairs autophagic flux and lysosomal functions in Parkinson's disease. Neuroscience 284:900-11
Wu YH, Wu WS, Lin LC, Liu CS, Ho SY, Wang BJ, Huang BM, Yeh YL, Chiu HW, Yang WL, Wang YJ (2018) Bortezomib enhances radiosensitivity in oral cancer through inducing autophagy-mediated TRAF6 oncoprotein degradation. J. Exp. Clin. Cancer Res. 37:91
Xu B, Kim ST, Lim DS, Kastan MB (2002) Two molecularly distinct G2/M checkpoints are induced by ionizing irradiation. Mol. Cell Biol. 22:1049-59
Yang L, Liu Y, Wang M, Qian Y, Dai X, Zhu Y, Chen J, Guo S, Hisamitsu T (2016) Celastrus orbiculatus extract triggers apoptosis and autophagy via PI3K/Akt/mTOR inhibition in human colorectal cancer cells. Oncol. Lett. 12:3771-8
Yang XH, Edgerton S, Thor AD (2005) Reconstitution of caspase-3 sensitizes MCF-7 breast cancer cells to radiation therapy. Int. J. Oncol. 26:1675-80
Yoshino H, Kumai Y, Kashiwakura I (2017) Effects of endoplasmic reticulum stress on apoptosis induction in radioresistant macrophages. Mol. Med. Rep. 15:2867-72.
Yu X, Ling J, Liu X, Guo S, Lin Y, Liu X, Su L (2017) Cordycepin induces autophagy-mediated c-FLIPL degradation and leads to apoptosis in human non-small cell lung cancer cells. Oncotarget 8:6691-9
Zhu H, Zhang L, Wu S, Teraishi F, Davis JJ, Jacob D, Fang B (2004) Induction of S-phase arrest and p21 overexpression by a small molecule 2[[3-(2,3-dichlorophenoxy)propyl] amino]ethanol in correlation with activation of ERK. Oncogene 23:4984-92
校內:2023-08-24公開