| 研究生: |
張鈞 Chang, Chun |
|---|---|
| 論文名稱: |
單剪狀態下麥寮砂液化特性 Liquefaction characteristics of Mai-Liao sand under simple shear conditions |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 粉土質細砂 、霧式霣落法 、Ko狀態單剪液化試驗 、細粒料含量 、液化行為 、液化強度 |
| 外文關鍵詞: | silty sand, mist pluviation, cyclic simple shear test, fines content, liquefaction resistence, liquefaction behavior |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣因地理位置處於歐亞大陸板塊與菲律賓海板塊交界處,地震活動頻繁帶來許多災害,其中地震所導致的土壤液化即為其中一個例子,台灣中西部沖積平原多為粉土質砂土,其液化行為與乾淨砂有明顯的不同,且粉土質細砂受到顆粒排列與組成結構的影響,導致在相同的試驗條件下,以不同的試體重模方法或細粒料含量進行液化試驗可產生不同的結果,本研究以取自雲林麥寮台塑六輕的麥寮砂(Mai-Liao Sand, MLS)來代表台灣中西部粉土質砂土進行液化強度試驗,以霧式霣落法(mist pluviation)重模不同細粒料含量試體施做Ko狀態單剪液化試驗,以得到模擬現地應力條件與堆積情形下不同細粒料含量的粉土質砂液化行為與強度,並以取自彰化外海離岸風力發電場址之現地粉土質砂試體液化結果進行比較,藉此驗證以重模試體得到之試體細粒料含量與液化行為間關係,以便於協助台灣對粉土質細砂液化強度與液化特性之推估。
Taiwan is located at the junction of the Eurasian Plate and the Philippine Sea Plate, result in frequent earthquakes and relevent disasters like liquefaction. The type of sand at southwest Taiwan is silty sand, and its liquefaction behavior is significantly different from clean sand because of the effect of particle arrangement and compositional structure, which lead to different results in liquefaction test with different reconstitute method or fines content. To simulate liquefaction resistence and behavior under in-situ stress conditions and accumulation conditions in different fines content. Not only use Mai-Liao sand to represent silty sand from Taiwan southwest, this study also prepare specimens with different fines content by mist pluviation and conduct cyclic simple shear liquefaction test at Ko condition. Comparing test results to undisturbed specimen, which is taken from Changhua offshore wind power site. In order to estimate liquefaction strength and liquefaction properties of silty sand, Discuss the difference of soil liquefaction behavior between undisturbed soil and remolded specimens.
1. 張嘉偉(1997)“圓錐貫入試驗在粉砂中之標定”國立交通大學土木工程學系,碩士論文。
2. 王統立(2000)“高細料含量粉土細砂中CPT 之標定試驗”國立交通大學土木工程學系,碩士論文。
3. 蔡明道(2002)“細粒料含量對粉土細砂不排水強度之影響”國立交通大學土木工程學系,碩士論文。
4. 孫家雯(2003) “砂土細粒料界定對液化強度之影響” 國立交通大學土木工程學系,碩士論文。
5. 郭毓真(2004) “細粒料含量對麥寮砂動態行為之影響”國立交通大學土木工程學系,碩士論文。
6. 黃俞傑(2006) “濕噴法粉土細砂試體之製作”國立交通大學土木工程學系,碩士論文
7. 闕慎佑(2010) “K_0狀態下低塑性粉質砂土原樣與重模試驗之液化行為與動態特性比較” 國立暨南大學土木工程學系,碩士論文
8. 黃信博(2016) “應用非飽和單剪於降雨入滲引至淺層邊坡滑動模擬之研究” 國立成功大學土木工程學系,碩士論文
9. Amini, F., and Qi, Z. (2000). “Liquefaction testing of stratified silty sands.”, Jour. of the Geotech. Eng., Vol. 126(3), pp. 208–217.
10. De Alba, P.A., H.B. Seed and C.K. Chan (1976). “Sand Liquefaction in Large Simple Shear Tests ”, Jour. of the Geotech. Eng., ASCE, Vol. 102, pp. 909-927.
11. Finn, W.O. Liam, J.J. Emery and Y.P. Gupta (1970). “A Shake Table Study of the Liquefaction of Saturated Sands During Earthquakes”, Earthquake Engineering, pp. 253-262.
12. Finn, W.O. Liam, L. Bransby and D.J. Pickering (1970). “Effect of Strain History on Lique faction of Sand ”, Jour. of the Soil Mech. and Found. Div. , ASCE, pp. 1917-1934.
13. Finn, W.O. Liam, D.J. Pickering and P.L. Bransby (1971). “Sand Liquefaction in Triaxial and Simple Shear Tests”, Jour. of the Soil Mech. and Found. Div. , ASCE, Vol. 97, pp. 639-659.
14. Finn, W.D. Liam, Y.P. Vaid and S.K. Bhatia (1978). “Constant Volume Cyclic Simple Shear Testing ” .
15. Frost, J.D., Park, J.-Y. (2003). “A critical assessment of the moist tamping technique Geotech. Test. ”, ASTM 26 (1), pp. 57–70.
16. Høeg, K., Dyvik, R., Sandbaekken, G. (2000). “Strength of undisturbed versus reconstituted silt and silty sand specimens”, Jour. of the Geotech. Eng., ASCE, Vol. 126 (7), pp. 606–617.
17. Huang, A.B., Chang, W.J., Hsu, H.H., Huang, Y.J. (2015). “A mist pluviation method for reconstituting silty sand specimens.”, Engineering Geology, Vol. 188, pp. 1-9.
18. Ishihara, K. and S-I. Li (1972). “Liquefaction of Saturated Sand in Triaxial Torsion Shear Test”, Soils and Foundation Jour., Vol. 12, pp. 19-39.
19. Ishihara, K. and Yoshimine, M. (1992). “Evaluation of Settlement in Sand Deposits Following Liquefaction during Earthquakes.”, Soils and Foundation Jour.,Vol. 32, pp. 173-188.
20. Ishihara, K. (1993). “Liquefaction and flow failure during earthquakes.”, Geotechnique Vol. 43(3), pp. 351-415.
21. Kuerbis, R. H., Negussey, D., and Vaid, Y. P. (1988). “Effect of gradation and fines content on the undrainedresponse of sand.”, Geotechnical Spec. Publ., Vol. 21, pp. 330–345.
22. Kammerer, A., Pestana, J., and Seed, R. (2002). “Undrained Response of 0/30 Sand Under Multidirectional Cyclic Simple Shear Loading Conditions.”, Geotechnical Engineering Research Report No. UCB/GT/02-01.
23. Lee, K.L. and J.A. Fitton (1968). “Factors Affecting the Dynamic Strength of Soil”, Vibration Effects on Soils and Foundations, STP450.
24. Lee,K.L.,and Albaisa,A. (1974). “Earthquake Induced Settlements in Saturated Sand”, ASTM, STP450, pp. 71-96.
25. Lo Presti, D., Pedroni, S., Crippa, V. (1992). “Maximum dry density of cohesionless soils”, J. ASTM, Vol. 15(2), pp. 180–189.
26. Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K., Arulanandan, K. (1977). “Effects of sample preparation on sand liquefaction.”, Jour. of the Geotech. Eng., ASCE, Vol. 103 (2), pp. 91–108.
27. Marshall L.Silver , Fumio Tatsuoka , Apichart Phukunhaphan and Anestis S.Avramidis (2007).“Cyclic undrained strength of sand by triaxial test and simple shear test”.
28. Oda, M., Koishikawa, I., Higuchi, T. (1978). “Experimental study of anisotropic shear strength of sand by plane strain test.”, Soils Found. Vol. 18 (1), pp. 25–38.
29. Peacock, W.H. and H.B., Seed (1968). “Sand Lique faction Under Cyclic Loading Simple Shear Conditions”, Jour. of the Soil Mech. and Found. Div. , ASCE, Vol. 94, pp. 689-708.
30. Polito, C. P., and Martin, J. R. (2001). “Effects of non-plastic fines on the liquefaction resistance of sands.”, Jour. of the Geotech. Eng., Vol. 127(5), pp. 408–415.
31. Seed, H.B., and Lee,K.L. (1966). “Liquefaction of Saturated Sands During Cyclic Loading”, Jour. of the Soil Mech. and Found. Div., ASCE, Vol. 92, pp. 105-134.
32. Seed,H.B., and Peacock,W.H. (1971). “The Procedure for Measuring Soil Liquefacton Characteristics”, Jour. of the Soil Mech. and Found. Div. , ASCE, Vol. 97, pp. 1099-111.
33. Seed, H.B. (1976). “Evaluation of Soil Liquefaction Effects of Level Ground During Earthquakes”, ASCE Annual Convention and Exposition.
34. Seed, H.B., K. Mori and C.K. Chan (1977). “Influence of Seismic History on Liquefaction”, Jour. of the Geotech. Eng. , ASCE, Vol. 103, pp. 246-270.
35. Seed, H.B., Pyke, R.M., and Martin, G.R. (1978). “Effects of multidirectional shaking on pore pressure development in sands.”, Jour. of the Geotech. Eng. , ASCE, Vol. 104, pp. 27-44.
36. Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). “Influence of SPT Procedures in soil liquefaction resistance evaluations.”, Jour. of the Geotech. Eng. , ASCE, Vol. 111(12), pp. 1425-1445.
37. Singh, S. (1994). “Liquefaction characteristics of silts.”, Geotech. Spec. Publ., Vol. 44, pp. 105–116.
38. Tatsuoka, F., Ochi, K., Fujii, S., Okamoto, M. (1986). “Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. ”, Soils Found. , Vol. 26(3), pp. 23–41.
39. Yoshimi, Y., Tokimatsu, K., Kaneko, O., Makihara, Y. (1984). “Undrained cyclic shear strength of a dense Niigata sand. Soils Found.”, Vol. 24 (4), pp. 131–145.
40. Yamamuro, J.A., Wood, F.M. (2004). “Effects of depositional method on the undrained be havior and microstructure of sand with silt.”, Soil Dyn. Earthq. Eng. Vol. 24 (9–10), pp. 754-760.